Proposal for Course Revisions
Fall 2018

Subject and Number: Mathematics 110
Descriptive Title: Structures and Concepts in Mathematics
Course Discipline(s): Mathematics
Division: Mathematical Sciences
Department: Mathematics
Faculty Proposer: Susanne Bucher
Division CCC Rep: Diaa Eldanaf
Division Curriculum Committee Approval Date: 10/13/18

Course Review Rationale (The standard rationale verbiage is included. Add additional rationale information if needed): This course is being reviewed to meet Title 5 regulations and local standards. Add additional justification as needed: Six year review cycle.

☐ Inactivation
Justification:
(If this course is being inactivated, stop here. No other parts of the form need to be complete.)

I. Course Name and Number
☒ No changes
☐ Revisions
Justification:

Descriptive Title
☒ No Changes
☐ Revisions
Justification:

Catalog Description
☒ No Changes
☐ Revisions
Justification:

Conditions of Enrollment
☒ No Changes
☐ Revisions (If prerequisite changes are being proposed, contact the Curriculum Advisor.)
Justification:
II. Student Learning Outcomes (SLOs)
☒ No Changes
☐ Revisions
Justification:

III. Objectives
☒ No Changes
☐ Revisions
Justification:

IV. Major Topics
☒ No Changes
☐ Revisions
Justification:

V. Primary Methods of Evaluation
☒ No Changes
☐ Revisions
Justification:

VI. Instructional Methods
☒ No Changes
☐ Revisions
Justification:

VII. Work Outside of Class
☒ No Changes
☐ Revisions
Justification:

VIII. TEXTS AND MATERIALS
☐ No Changes
☒ Revisions
Justification: Update Textbook
IX. Distance Education Addendum
If a Distance Education Addendum exists for this course, you must complete the Distance Education Addendum below. Please refer to CurricUNET version if needed.

This course is not offered through Distance Education

Distance Education Version of this Course
Current version □ Online □ Hybrid
□ No Changes
□ Revisions
Justification:

Delivery Method:
□ Online (Complete Section A)
□ Hybrid (Complete Section B)

A. Online (51% or more online instruction with an optional or mandatory on-campus orientation.)
Complete this section.

I. Methods of Regular Effective Contact Between Instructor and Student (Check all that apply)
A. Group Meetings:
☐ Chat Room
☐ Interactive Videoconferencing
☐ Teleconference
☐ On Campus
☐ Other (Please specify)

B. Electronic/Technology-Assisted Contact
☐ Online
☐ Email
☐ Listserv
☐ Chat Room
☐ Interactive Videoconferencing
☐ Website/Bulletin Board
☐ Telephone
☐ U.S. Mail
☐ On Campus
☐ Other (Please specify)

C. Office Hours
☐ Online
☐ On Campus

II. Methods of Evaluation
☐ Methods of Evaluation do NOT differ from those in the Course Outline of Record
☐ Methods of Evaluation in the Course Outline of Record are modified or supplemented
III. Administration of Examinations
☐ On Campus
☐ Online
☐ Email
☐ U.S. Mail
☐ Proctored Off Campus
☐ Not applicable
☐ Other (Please specify)

IV. Text/Supplemental Readings/Materials
☐ Texts, Supplemental Readings, and Materials do NOT differ from those listed in the Course Outline of Record
☐ Texts, Supplemental Readings, and Materials differ from those listed in the Course Outline of Record

V. Accommodations for Students with Disabilities and Instructional Delivery
In compliance with ECC Board Policies 1600 and 3410, Title 5 California Code of Regulations, the Rehabilitation Act of 1973 – Sections 504 and 508, and the Americans with Disabilities Act, instructional delivery shall provide access, full inclusion, and effective communication for students with disabilities. Instructional delivery methods may include, but are not limited to, Braille/audiotape for print material, on-site interpreter/real-time transcription/live captioning for audio material, captioning for video material, alternative text for images, and captioning of audio information for electronic media materials (such as web and online).

☐ Instructors of the distance education version of this course will read and will comply with the Accommodations for Students with Disabilities and Instructional Deliver.

B. Hybrid (51% of more online instruction with regularly scheduled mandatory on-campus meetings.)
Complete this section.

I. Methods of Regular Effective Contact Between Instructor and Student (Check all that apply)
A. Group Meetings:
☐ Chat Room
☐ Interactive Videoconferencing
☐ Teleconferencing
☐ On Campus
☐ Other (Please specify)

B. Electronic/Technology-Assisted Contact
☐ Online
☐ Email
☐ Listserv
☐ Chat Room
☐ Interactive Video Conferencing
☐ Website/Bulletin Board
☐ Telephone
☐ U.S. Mail
☐ On Campus
C. Office Hours
☐ Online
☐ On Campus

II. Methods of Evaluation
☐ Methods of Evaluation do NOT differ from those in the Course Outline of Record
☐ Methods of Evaluation in the Course Outline of Record are modified or supplemented

III. Administration of Examinations
☐ On Campus
☐ Online
☐ Email
☐ U.S. Mail
☐ Proctored Off Campus
☐ Not applicable
☐ Other (Please specify)

IV. Text/Supplemental Readings/Materials
☐ Texts, Supplemental Readings, and Materials do NOT differ from those listed in the Course Outline of Record
☐ Texts, Supplemental Readings, and Materials differ from those listed in the Course Outline of Record

V. Accommodations for Students with Disabilities and Instructional Delivery
In compliance with ECC Board Policies 1600 and 3410, Title 5 California Code of Regulations, the Rehabilitation Act of 1973 – Sections 504 and 508, and the Americans with Disabilities Act, instructional delivery shall provide access, full inclusion, and effective communication for students with disabilities. Instructional delivery methods may include, but are not limited to, Braille/audiotape for print material, on-site interpreter/real-time transcription/live captioning for audio material, captioning for video material, alternative text for images, and captioning of audio information for electronic media materials (such as web and online).

☐ Instructors of the distance education version of this course will read and will comply with the Accommodations for Students with Disabilities and Instructional Delivery.
Instructions:
To facilitate course review, please make your changes directly on this document and indicate the changes using strikethroughs, highlights, or by changing the color of the font. Please do not use Track Changes.

El Camino College
COURSE OUTLINE OF RECORD - Official

I. GENERAL COURSE INFORMATION

Subject and Number: Mathematics 110
Descriptive Title: Structures and Concepts in Mathematics
Course Disciplines: Mathematics
Division: Mathematical Sciences

Catalog Description:
As an introduction to the use of logical, quantitative, and spatial reasoning in the discipline of mathematics, students in this course examine the mathematical topics of set theory, numeration, number theory, functions, graphs, patterns and the structure of real numbers. Students investigate the interrelationships among these topics, with an emphasis on algebraic, geometric and kinesthetic modeling, inductive and deductive logic, and proofs using pictures. Designed for pre-service elementary school teachers, this course is appropriate for all students interested in a deeper understanding of the structure of mathematics.

Note: The maximum UC credit allowed for students completing Mathematics 110, 111, 115, and 116 is one course.

Conditions of Enrollment:

Prerequisite: Mathematics 67 or Mathematics 73 or Mathematics 80 with a minimum grade of C in prerequisite or qualification by testing (El Camino College Mathematics Placement Test) and assessment

Course Length: X Full Term Other (Specify number of weeks):

Hours Lecture: 2.00 hours per week TBA
Hours Laboratory: 2.00 hours per week TBA
Course Units: 3.00
Grading Method: Letter
Credit Status: Associate Degree Credit
Transfer CSU: X Effective Date: Prior to July 1992
Transfer UC: X Effective Date: Fall 2001
II. OUTCOMES AND OBJECTIVES

A. COURSE STUDENT LEARNING OUTCOMES (The course student learning outcomes are listed below, along with a representative assessment method for each. Student learning outcomes are not subject to review, revision or approval by the College Curriculum Committee)

1. Students will be able to demonstrate/perform the four basic operations with real numbers and interpret the results.

2. Students will be able to explain the underlying mathematical concepts of the binary operations using written and oral means.

3. Students will be able to solve an application problem and design an application when parameters are given.

The above SLOs were the most recent available SLOs at the time of course review. For the most current SLO statements, visit the El Camino College SLO webpage at http://www.elcamino.edu/academics/slo/.

B. Course Student Learning Objectives (The major learning objective for students enrolled in this course are listed below, along with a representative assessment method for each)

1. Demonstrate the strengths and weaknesses of various numeration systems, including the advantages of place-value systems.

 Oral exams

2. Perform binary operations on whole numbers in a variety of numeration systems.

 Written homework

3. Construct, use and analyze algebraic, geometric and kinesthetic representations for binary operations on integers (in a variety of bases) and rational numbers.

Office Use Only: Course Identifier 17869
Oral exams
4. Present picture proofs justifying the common rules of divisibility.

Oral exams
5. Utilize set operations (union, intersection and complements) and their algebraic properties, as well as Venn diagrams, to solve logical and arithmetic problems.

Homework Problems

Homework Problems
7. Recognize, model, and solve pattern problems, including arithmetic and geometric patterns and sequences, using inductive or deductive reasoning.

Performance exams

Performance exams

Homework Problems
10. Decide on and execute a reasonable and meaningful strategy for estimating length, distance, perimeter and area in real-world contexts.

Performance exams

III. OUTLINE OF SUBJECT MATTER (Topics are detailed enough to enable a qualified instructor to determine the major areas that should be covered as well as ensure consistency from instructor to instructor and semester to semester.)

<table>
<thead>
<tr>
<th>Lecture or Lab</th>
<th>Approximate Hours</th>
<th>Topic Number</th>
<th>Major Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>4</td>
<td>I</td>
<td>Mathematical Reasoning</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A. Four-step problem solving process (Polya)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B. Inductive and deductive logic, proofs by induction, proofs by picture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C. Algebraic, geometric and kinesthetic models</td>
</tr>
<tr>
<td>Lab</td>
<td>4</td>
<td>II</td>
<td>Mathematical Reasoning Activities based on</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A. Four-step problem solving process (Polya)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B. Inductive and deductive logic, proofs by induction, proofs by picture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C. Algebraic, geometric and kinesthetic models</td>
</tr>
<tr>
<td>Lecture</td>
<td>2</td>
<td>III</td>
<td>Numeration Systems</td>
</tr>
<tr>
<td>Task Type</td>
<td>Number</td>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Lecture</td>
<td>5</td>
<td>VII</td>
<td>Number Theory</td>
</tr>
<tr>
<td>Lab</td>
<td>5</td>
<td>VIII</td>
<td>Number Theory Activities based on</td>
</tr>
<tr>
<td>Lecture</td>
<td>3</td>
<td>IX</td>
<td>Patterns</td>
</tr>
<tr>
<td>Lab</td>
<td>2</td>
<td>IV</td>
<td>Numeration Systems Activities based on</td>
</tr>
<tr>
<td>Lecture</td>
<td>6</td>
<td>V</td>
<td>Set Theory</td>
</tr>
<tr>
<td>Lab</td>
<td>6</td>
<td>VI</td>
<td>Set Theory Activities based on</td>
</tr>
<tr>
<td>Lab</td>
<td>3</td>
<td>X</td>
<td>Patterns Activities based on</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A. Arithmetic and geometric patterns and sequences</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B. Recursively defined sequences, such as the Fibonacci sequence</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecture</th>
<th>6</th>
<th>XI</th>
<th>Functions and Graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A. Verbal, algebraic, tabular and graphical representations of functions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B. Coordinate geometry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C. Graphs of discrete, linear, step, quadratic and exponential functions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab</th>
<th>6</th>
<th>XII</th>
<th>Functions and Graphs Activities based on</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A. Verbal, algebraic, tabular and graphical representations of functions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B. Coordinate geometry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C. Graphs of discrete, linear, step, quadratic and exponential functions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecture</th>
<th>4</th>
<th>XIII</th>
<th>Estimation and Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A. Estimations of arithmetic operations on whole numbers, fractions and decimals</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B. Techniques for estimating measurements, such as length, distance, perimeter and area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab</th>
<th>4</th>
<th>XIV</th>
<th>Estimation and Measurement Activities based on</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A. Estimations of arithmetic operations on whole numbers, fractions and decimals</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B. Techniques for estimating measurements, such as length, distance, perimeter and area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecture</th>
<th>4</th>
<th>XV</th>
<th>Real Number System</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A. Whole numbers and counting numbers: definition, ordering, operations and properties</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B. Integers: definition, ordering, operations and properties</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C. Rational numbers: definition, relative size, ordering, operations and properties</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D. Irrational numbers: definition</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E. Properties of real numbers: closure, commutative, associative, identity and inverse, and the distributive properties (multiplication over addition and subtraction, and exponentiation over multiplication and division)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F. Models for teaching real numbers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab</th>
<th>6</th>
<th>XVI</th>
<th>Real Number System Activities based on</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A. Whole numbers and counting numbers: definition, ordering, operations and properties</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B. Integers: definition, ordering, operations and properties</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C. Rational numbers: definition, relative size, ordering, operations and properties</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D. Irrational numbers: definition</td>
</tr>
</tbody>
</table>
E. Properties of real numbers: closure, commutative, associative, identity and inverse, and the distributive properties (multiplication over addition and subtraction, and exponentiation over multiplication and division)

F. Models for teaching real numbers

<table>
<thead>
<tr>
<th>Lecture</th>
<th>2</th>
<th>XVII</th>
</tr>
</thead>
</table>

Mathematical Education Resources

A. California Standards, National Council of Teachers of Mathematics Standards, and related standards and organizations

B. Resources for mathematics and mathematics teaching

Total Lecture Hours 36

Total Laboratory Hours 36

Total Hours 72

IV. PRIMARY METHOD OF EVALUATION AND SAMPLE ASSIGNMENTS

A. PRIMARY METHOD OF EVALUATION:

Problem solving demonstrations (computational or non-computational)

B. TYPICAL ASSIGNMENT USING PRIMARY METHOD OF EVALUATION:

Politicians want to know how their position on an issue is viewed by particular constituencies. Decisions about policies are often made on the basis of polling information. Suppose an opinion survey was conducted to determine how much support there was for the president’s policies. People were asked three questions: (1) Do you support the president’s economic policy? (2) Do you support the president’s foreign policy? (3) Do you support the president’s social policy? (a) Sketch a Venn Diagram where set E contains the people responding "Yes" to question (1); set F contains the people responding "Yes" to question (2); and set S contains the people responding "Yes" to question (3). There are 29 people in set E, 49 in set F, and 24 in set S. Twelve people responded "Yes" to all three questions. Twenty people answered "Yes" to questions (1) and (2); fifteen people answered "Yes" to questions (1) and (3); and sixteen answered "Yes" to questions (2) and (3). (b) What percent of the people polled agree with the president’s economic policy? (c) Describe the subset that would be represented by the union of E and S. Write your answer in complete sentences. (d) If the president could make one single region of the Venn Diagram larger, which region would it be? Justify your answer.

C. COLLEGE-LEVEL CRITICAL THINKING ASSIGNMENTS:

0. Definition: A prime number is a superprime if, as digits are deleted from the right, each resulting number is itself a prime number. For example, the prime number 7331 is a superprime because 733, 73 and 7 are prime numbers. (a) For a prime number to be a superprime, what digits cannot appear in the number? Write a sentence or two justifying your answer. (b) Of the digits that can appear in a superprime, what digits cannot be the left-most digit? Write a sentence or two justifying your answer. (c) Determine all the two-digit superprimes. (d) Find at least one three-digit superprime. Explain your strategy for finding your example in a sentence or two.

1. Design and present to the class a geometric interpretation of a division of fractions problem. You may begin with a simple example. For instance, explain why $1/2 \div 1/4 = 2$, using a geometric representation.
But you must move beyond examples to a general division of fractions problem. Your geometric model of division of fractions must work when using improper fractions.

D. OTHER TYPICAL ASSESSMENT AND EVALUATION METHODS:
Objective Exams
Quizzes
Written homework
Homework Problems
Other (specify):
Reflective Essays, Poster Presentations and Teaching Lessons

V. INSTRUCTIONAL METHODS

Demonstration
Discussion
Lecture
Multimedia presentations
Other (please specify)
Individual or Small Group Presentations

Note: In compliance with Board Policies 1600 and 3410, Title 5 California Code of Regulations, the Rehabilitation Act of 1973, and Sections 504 and 508 of the Americans with Disabilities Act, instruction delivery shall provide access, full inclusion, and effective communication for students with disabilities.

VI. WORK OUTSIDE OF CLASS

Study
Answer questions
Skill practice
Required reading
Problem solving activities
Written work
Journal

Estimated Independent Study Hours per Week: 5

VII. TEXTS AND MATERIALS

A. UP-TO-DATE REPRESENTATIVE TEXTBOOKS

B. ALTERNATIVE TEXTBOOKS

C. REQUIRED SUPPLEMENTARY READINGS

D. OTHER REQUIRED MATERIALS

VIII. CONDITIONS OF ENROLLMENT

A. Requisites (Course and Non-Course Prerequisites and Corequisites)

Office Use Only: Course Identifier 17869
<table>
<thead>
<tr>
<th>Requisites</th>
<th>Category and Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Prerequisite Mathematics-67 or</td>
<td>Sequential</td>
</tr>
<tr>
<td>Course Prerequisite Mathematics-73 or</td>
<td>Sequential</td>
</tr>
<tr>
<td>Course Prerequisite Mathematics-80 or</td>
<td>Sequential</td>
</tr>
<tr>
<td>Non-Course Prerequisite</td>
<td>Placement assessment is an officially recognized mechanism for controlling enrollment in developmental mathematics courses. Placement cut scores are periodically reviewed by faculty and adjusted to match success rates in the target courses. Students who do not meet the placement cut score for this class are statistically highly unlikely to succeed.</td>
</tr>
</tbody>
</table>

B. Requisite Skills

<table>
<thead>
<tr>
<th>Requisite Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solve linear, quadratic, and rational equations. (Mathematics 73 and Mathematics 80) MATH 73 - Solve problems involving a variety of function types, including linear, quadratic, polynomial, rational and radical functions, as well as the absolute value function. MATH 80 - Solve problems involving a variety of function types, including linear, quadratic, polynomial, rational, radical, exponential, and logarithmic functions.</td>
</tr>
<tr>
<td>MATH 67 - Construct and use equations and inequalities to represent relationships involving one or more unknown or variable quantities to solve problems.</td>
</tr>
<tr>
<td>Graph linear, quadratic, and rational functions. (Mathematics 73 and Mathematics 80) MATH 80 - Graph a variety of functions and relations and draw connections between these graphs and solutions to problems. MATH 73 - Graph a variety of functions and relations and draw connections between these graphs and solutions to problems. MATH 67 - Translate problems from a variety of contexts into a mathematical representation (symbolic, tabular, and graphic) and vice versa.</td>
</tr>
<tr>
<td>MATH 67 - Describe the behavior of linear and exponential functions using symbolic expressions, verbal descriptions, tables and graphs.</td>
</tr>
</tbody>
</table>
Understand and utilize variables and function notation to solve problems. (Mathematics 73 and Mathematics 80) MATH 73 - Recognize functional relationships in the form of graphs, data or symbolic equations. MATH 73 - Solve problems involving a variety of function types, including linear, quadratic, polynomial, rational and radical functions, as well as the absolute value function.

Demonstrate ability to analyze problems and solutions critically. Explain, in writing, the reasoning behind solutions of application problems. (Mathematics 73 and Mathematics 80) ENGL 1A -

Read and apply critical-thinking skills to numerous published articles and to college-level, book-length works for the purpose of writing and discussion.

MATH 67 -

Translate problems from a variety of contexts into a mathematical representation (symbolic, tabular, and graphic) and vice versa.

MATH 67 -

Describe the behavior of linear and exponential functions using symbolic expressions, verbal descriptions, tables and graphs.

C. Recommended Preparations (Course and Non-Course)

<table>
<thead>
<tr>
<th>Recommended Preparation</th>
<th>Category and Justification</th>
</tr>
</thead>
</table>

D. Recommended Skills

<table>
<thead>
<tr>
<th>Recommended Skills</th>
</tr>
</thead>
</table>

E. Enrollment Limitations

<table>
<thead>
<tr>
<th>Enrollment Limitations and Category</th>
<th>Enrollment Limitations Impact</th>
</tr>
</thead>
</table>

Course created by Paul Wozniak on 10/01/1988. (DO NOT CHANGE)

BOARD APPROVAL DATE: (DO NOT CHANGE)

LAST BOARD APPROVAL DATE: (DO NOT CHANGE)

Last Reviewed and/or Revised by: Susanne Bucher
Date: 9/25/18

17869