
Characters, c-Strings,
and the string Class
CS 1: Problem Solving & Program Design Using C++

Objectives

 Perform character checks and conversions

 Knock down the C-string fundamentals

 Point at pointers and C-string library functions

 Discover C-string definitions and pointer arrays

 Look at more common programming errors

Character
Checks

Function Meaning

isalpha() True if argument is a letter, false otherwise

isalnum() True if argument is a letter or digit, false otherwise

isdigit() True if argument is a digit, false otherwise

islower() True if argument is a lowercase letter, false otherwise

isprint() True if argument is a printable character, false otherwise

ispunct() True if argument is a punctuation character, false otherwise

isupper() True if argument is an uppercase character, false otherwise

isspace() True if argument is a whitespace character, false otherwise

Character
Checks
Example

#include <iostream>
using namespace std;

int main()
{

char ch;

cout << “Input any character:” << endl;
cin >> ch;
if (isalpha(ch))
{

cout << ch << “ is an alphabetic character.” << endl;
}
if (isdigit(ch))
{

cout << ch << “ is a digit.” << endl;
}

Character
Checks
Example (2)

if (islower(ch))
{

cout << ch << " is a lowercase character." << endl;
}
if (isupper(ch))
{

cout << ch << " is an uppercase character." << endl;
}
if (isspace(ch))
{

cout << ch << " is a whitespace character." << endl;
}

return 0;
}

Character
Conversion:
toupper

 toupper: if char argument is lowercase letter, return uppercase
equivalent; otherwise, return input unchanged

char ch1 = 'H';
char ch2 = 'e';
char ch3 = '!';

cout << toupper(ch1); // displays 'H'

cout << toupper(ch2); // displays 'E'

cout << toupper(ch3); // displays '!'

Character
Conversion:
tolower

 tolower: if char argument is uppercase letter, return lowercase
equivalent; otherwise, return input unchanged

char ch1 = 'H';
char ch2 = 'e';
char ch3 = '!';

cout << tolower(ch1); // displays 'h'

cout << tolower(ch2); // displays 'e'

cout << tolower(ch3); // displays '!'

C-String
Fundamentals

 C++ has two different ways of storing and manipulating strings
 String class

 Character strings (C-strings): using an array of characters that is
terminated by a sentinel value (the escape sequence '\0’)

 Character strings can be manipulated using standard element-by-
element array-processing techniques

 cstring class introduced with latest ANSI/ISO standard

C-String
Fundamentals
(2)

 String literal (string): a sequence of characters enclosed in double
quotes

“This is a string”

 Strings stored as an array of characters terminated by a special
end-of-string marker called the NULL character

 This character is a sentinel marking the end of the string

 The NULL character is represented by the escape sequence,\0

C-String
Fundamentals
(3)

 Individual characters in a string array can be input, manipulated, or
output using standard array-handling techniques

 Array-handling techniques can use either subscripts or pointers

 The end-of-string NULL character is useful for detecting the end
of the string

C-String Input
and Output

 Inputting and displaying string requires a standard library function
or class method:

 cin and cout (standard input and output streams)

 String and character I/O functions

 Requires the iostream header file

 Character input methods not the same as methods defined for the
string class having the same name

 Character output methods are the same as for string class

C-String Input
and Output
Functions

C++ Routine Description Example

cin.getline
(str, n, ch)

C-string input from the keyboard cin.getline (str, 81, ‘\n’);

cin.get () Character input from the keyboard nextChar = cin.get ();

cin.peek () Return the next character of the
input stream without extracting it
from the stream

nextPeek = cin.peek ();

cout.put
(charExp)

Place the character on the output
stream

cout.put (‘A’);

cin.putback
(charExp)

Push a character back onto the
input stream

cin.putback (cKey);

cin.ignore (n,
char)

Ignore a maximum of the next n
input characters, up to and
including the detection of char; if
no arguments are specified, ignore
the next character on the input
stream

cin.ignore (80, ‘\n’);
cin.ignore ();

C-String Input
and Output
Example

#include <iostream>
using namespace std;

int main()
{

const int MAXCHARS = 81;
char message[MAXCHARS]; // An array large enough to
// store a complete line

cout << "Enter a string : " << endl;
cin.getline(message, MAXCHARS, '\n');

cout << "The message entered is " << message << endl;
cin.ignore();

return 0;
}

C-String Input
and Output
Example
Sample Run

Enter a string:

This is a test input of a string of

characters.

The string just entered is:

This is a test input of a string of

characters.

Notes About
the C-String
Input and
Output
Example

 The cin.getline() method continuously accepts and stores
characters into character array named message

 Input continues until:
 Either 80 characters are entered

 The ENTER key is detected

Notes About
the C-String
Input and
Output
Example (2)

 All characters encountered by cin.getline(), except newline
character, are stored in message array

 Before returning, cin.getline() function appends a NULL character,
'\0', to the stored set of characters

 cout object is used to display the C-string

Reasons for
Using a string
Class Object

 Automatic bounds checking on every index used to access string
elements

 The string class automatically expands and contracts storage as
needed

 The string class provides a rich set of methods for operating on a
string

 Easy to convert to a C-string using c_str()

Reasons for
Using C-
Strings

 Programmer has ultimate control over how string is stored and
manipulated

 Large number of extremely useful functions exist to input,
examine, and process C-strings

 C-strings are an excellent way to explore advanced programming
techniques using pointers (Chapter 14)

 You will encounter them throughout your programming career, as
they are embedded in almost all existing C++ code

 They are fun to program

C-String
Processing

 C-strings can be manipulated by using either standard library
functions or standard array-processing techniques

 Library functions presented in the next section

 First look at processing a string in a character-by-character fashion
 Will allow us to understand how standard library functions are

constructed and to create our own library functions

 Example: strcopy() copies contents of string2 to string1

strcopy ()

// copy string2 to string1
void strcopy(char string1[], char string2[])
{
int i = 0;
while (string2[i] != '\0')
{

string1[i] = string2[i];
i++;

}
string1[i] = '\0';
return;

}

Main Features
of strcopy ()

 The two strings are passed to strcopy as arrays

 Each element of string2 is assigned to the equivalent element of
string1 until end-of-string marker is encountered

 Detection of NULL character forces termination of the while loop
that controls the copying of elements

 Because NULL character is not copied from string2 to string1, the
last statement in strcopy() appends an end-of-string character to
string1

Character-by-
Character
Input

 C-strings can be entered and displayed using character-by-
character techniques

 We can use cin.get() to accept a string one character at a time
 Replace cin.getline() function

 Characters will be read and stored in message array, provided:

 Number of characters is less than 81

 Newline character is not encountered

Pointers and C-
String Library
Functions

 Pointers are very useful in constructing functions that manipulate
C-strings

 When pointers are used in place of subscripts to access individual
C-string characters, resulting statements are more compact and
efficient

 Consider strcopy() function from a few slides back
 Two modifications necessary before converting to a pointer

version…

Possible
Modifications
of strcopy ()

 Modification 1: eliminate (string2[I] != ‘\0’) test from while
statement

 This statement only false when end-of-string character is
encountered

 Test can be replaced by (string2[I])

 Modification 2: include assignment inside test portion of while
statement

 Eliminates need to terminate copied string with NULL character

Pointer and C-
String Library
Function
Version of
strcopy ()

void strcopy(char *string1, char *string2)
{

while (*string1 = *string2)
{

string1++;
string2++;

}
return;

}

Library
Functions

 C++ does not provide built-in operations for complete arrays (such
as array assignments)

 Assignment and relational operations are not provided for C-
strings

 Extensive collections of C-string handling functions and routines
included with all C++ compilers

 These functions and routines provide for C-string assignment,
comparison and other operations

Commonly
Used Library
Functions:
strcpy ()

 strcpy(): copies a source C-string expression into a destination C-
string variable

 Example: strcpy(string1, "Hello World!") copies source string literal
"Hello World!" into destination C-string variable string1

Commonly
Used Library
Functions:
strcat ()

 strcat(): appends a string expression onto the end of a C-string
variable

 Example: strcat(dest_string, " there World!")

Commonly
Used Library
Functions:
strlen ()

 strlen(): returns the number of characters in its C-string parameter
(not including NULL character)

 Example: value returned by strlen("Hello World!") is 12

Commonly
Used Library
Functions:
strcmp ()

 strcmp(): compares two C-string expressions for equality
 When two C-strings are compared, individual characters are

compared a pair at a time

 If no differences found, strings are equal

 If a difference is found, string with the first lower character is
considered smaller string

 Example: "Hello" is greater than "Goodbye" (first 'H' in Hello greater
than first 'G' in Goodbye)

Character
Routines

 Character-handling routines: provided by C++ compilers in
addition to C-string manipulation functions

 Prototypes for routines are contained in header file cctype; should
be included in any program that uses them

Conversion
Routines

 Used to convert strings to and from integer and double-precision
data types

 Prototypes for routines contained in header file cstdlib;
 cstdlib should be included in any program that uses these routines

String
Conversion
Routines

Prototype Description Example

int atoi (stringExp) Convert an ASCII string to an integer;
conversion stops at the first non-
integer character

atoi (“1234”);

double atof (stringExp) Convert an ASCII string to a double-
precision number; conversion stops at
the first character that cannot be
interpreted as a double

atof (“12.34”);

char [] itoa (stringExp) Convert an integer to an ASCII string;
the space allocated for the returned
string must be large enough for the
converted value

itoa (1234)

C-String
Definitions and
Pointer Arrays

 The definition of a C-string automatically involves a pointer

 Example: definition char message1[80];
 Reserves storage for 80 characters

 Automatically creates a pointer constant, message1, that contains
the address of message1[0]

 Address associated with the pointer constant cannot be changed

 It must always “point to” the beginning of the created array

C-String
Definitions and
Pointer Arrays
(2)

 Also possible to create C-string using a pointer
 Example: definition char *message2; creates a pointer to a character

 message2 is a true pointer variable

 Once a pointer to a character is defined, assignment statements,
such as message2 = "this is a string";, can be made

 message2, which is a pointer, receives address of the first character
in the string

C-String
Definitions and
Pointer Arrays
(3)

 Main difference in the definitions of message1 as an array and
message2 as a pointer is the way the pointer is created

 char message1[80]explicitly calls for a fixed amount of storage for
the array

 Compiler creates a pointer constant

 char *message2 explicitly creates a pointer variable first
 Pointer holds the address of a C-string when the C-string is actually

specified

C-String
Definitions and
Pointer Arrays
(4)

 Defining message2 as a pointer to a character allows C-string
assignments

 message2 = "this is a string"; is valid

 Similar assignments not allowed for C-strings defined as arrays
 message1 = "this is a string"; is not valid

 Both definitions allow initializations using string literals such as:

char message1[80] = "this is a string";

char *message2 = "this is a string";

C-String
Definitions and
Pointer Arrays
(5)

 Allocation of space for message1 different from that for message2

 Both initializations cause computer to store same C-string
internally

 message1 storage:
 Specific set of 80 storage locations reserved; first 17 locations

initialized

 Different C-strings can be stored, but each string overwrites
previously stored characters

 Same is not true for message2

C-String
Definitions and
Pointer Arrays
(6)

 Definition of message2 reserves enough storage for one pointer
 Initialization then causes the string literal to be stored in memory

 Address of the string’s first character (‘t’) is loaded into the pointer

 If a later assignment is made to message2, the initial C-string
remains in memory; new storage locations allocated to new C-string

C-String
Storage
Allocation

C-String
Storage
Allocation (2)

Pointer Arrays

 Declaration of an array of character pointers is an extremely useful
extension to single string pointer declarations

 Declaration char *seasons[4]; creates an array of four elements;
each element is a pointer to a character.

 Each pointer can be assigned to point to a string using string
assignment statements

 seasons[0] = "Winter";

 seasons[1] = "Spring";

 seasons[2] = "Summer";

 seasons[3] = "Fall"; // note: string lengths may differ

Pointer Arrays
(2)

 The seasons array does not contain actual strings assigned to the
pointers

 Strings stored in data area allocated to the program

 Array of pointers contains only the addresses of the starting
location for each string

 Initializations of the seasons array can also be put within array
definition:

char *seasons[4] = {"Winter",

"Spring",

"Summer",

"Fall"};

Pointer Arrays
(3)

Common
Programming
Errors

 Using a pointer to point to a nonexistent data element

 Not providing enough storage for a C-string to be stored

 Misunderstanding of terminology
 Example: if text is defined as char *text;

 Variable text is sometimes called a string

 text is not a string; it is a pointer that contains the address of the first
character in the C-string

Summary

 A C-string is an array of characters that is terminated by the NULL
character

 C-strings can always be processed using standard array-
processing techniques

 The cin, cin.get(), and cin.getline() routines can be used to input a
C-string

 The cout object can be used to display C-strings

 Pointer notation and pointer arithmetic are useful for
manipulating C-string elements

Summary (2)

 Many standard library functions exist for processing C-strings as a
complete unit

 C-string storage can be created by declaring an array of characters
or by declaring and initializing a pointer to a character

 Arrays can be initialized using a string literal assignment of the
form

char *arr_name[] = "text";

 This initialization is equivalent to

char *arr_name[] = {'t','e','x','t','\0'};

