
Characters, c-Strings,
and the string Class
CS 1: Problem Solving & Program Design Using C++

Objectives

 Perform character checks and conversions

 Knock down the C-string fundamentals

 Point at pointers and C-string library functions

 Discover C-string definitions and pointer arrays

 Look at more common programming errors

Character
Checks

Function Meaning

isalpha() True if argument is a letter, false otherwise

isalnum() True if argument is a letter or digit, false otherwise

isdigit() True if argument is a digit, false otherwise

islower() True if argument is a lowercase letter, false otherwise

isprint() True if argument is a printable character, false otherwise

ispunct() True if argument is a punctuation character, false otherwise

isupper() True if argument is an uppercase character, false otherwise

isspace() True if argument is a whitespace character, false otherwise

Character
Checks
Example

#include <iostream>
using namespace std;

int main()
{

char ch;

cout << “Input any character:” << endl;
cin >> ch;
if (isalpha(ch))
{

cout << ch << “ is an alphabetic character.” << endl;
}
if (isdigit(ch))
{

cout << ch << “ is a digit.” << endl;
}

Character
Checks
Example (2)

if (islower(ch))
{

cout << ch << " is a lowercase character." << endl;
}
if (isupper(ch))
{

cout << ch << " is an uppercase character." << endl;
}
if (isspace(ch))
{

cout << ch << " is a whitespace character." << endl;
}

return 0;
}

Character
Conversion:
toupper

 toupper: if char argument is lowercase letter, return uppercase
equivalent; otherwise, return input unchanged

char ch1 = 'H';
char ch2 = 'e';
char ch3 = '!';

cout << toupper(ch1); // displays 'H'

cout << toupper(ch2); // displays 'E'

cout << toupper(ch3); // displays '!'

Character
Conversion:
tolower

 tolower: if char argument is uppercase letter, return lowercase
equivalent; otherwise, return input unchanged

char ch1 = 'H';
char ch2 = 'e';
char ch3 = '!';

cout << tolower(ch1); // displays 'h'

cout << tolower(ch2); // displays 'e'

cout << tolower(ch3); // displays '!'

C-String
Fundamentals

 C++ has two different ways of storing and manipulating strings
 String class

 Character strings (C-strings): using an array of characters that is
terminated by a sentinel value (the escape sequence '\0’)

 Character strings can be manipulated using standard element-by-
element array-processing techniques

 cstring class introduced with latest ANSI/ISO standard

C-String
Fundamentals
(2)

 String literal (string): a sequence of characters enclosed in double
quotes

“This is a string”

 Strings stored as an array of characters terminated by a special
end-of-string marker called the NULL character

 This character is a sentinel marking the end of the string

 The NULL character is represented by the escape sequence,\0

C-String
Fundamentals
(3)

 Individual characters in a string array can be input, manipulated, or
output using standard array-handling techniques

 Array-handling techniques can use either subscripts or pointers

 The end-of-string NULL character is useful for detecting the end
of the string

C-String Input
and Output

 Inputting and displaying string requires a standard library function
or class method:

 cin and cout (standard input and output streams)

 String and character I/O functions

 Requires the iostream header file

 Character input methods not the same as methods defined for the
string class having the same name

 Character output methods are the same as for string class

C-String Input
and Output
Functions

C++ Routine Description Example

cin.getline
(str, n, ch)

C-string input from the keyboard cin.getline (str, 81, ‘\n’);

cin.get () Character input from the keyboard nextChar = cin.get ();

cin.peek () Return the next character of the
input stream without extracting it
from the stream

nextPeek = cin.peek ();

cout.put
(charExp)

Place the character on the output
stream

cout.put (‘A’);

cin.putback
(charExp)

Push a character back onto the
input stream

cin.putback (cKey);

cin.ignore (n,
char)

Ignore a maximum of the next n
input characters, up to and
including the detection of char; if
no arguments are specified, ignore
the next character on the input
stream

cin.ignore (80, ‘\n’);
cin.ignore ();

C-String Input
and Output
Example

#include <iostream>
using namespace std;

int main()
{

const int MAXCHARS = 81;
char message[MAXCHARS]; // An array large enough to
// store a complete line

cout << "Enter a string : " << endl;
cin.getline(message, MAXCHARS, '\n');

cout << "The message entered is " << message << endl;
cin.ignore();

return 0;
}

C-String Input
and Output
Example
Sample Run

Enter a string:

This is a test input of a string of

characters.

The string just entered is:

This is a test input of a string of

characters.

Notes About
the C-String
Input and
Output
Example

 The cin.getline() method continuously accepts and stores
characters into character array named message

 Input continues until:
 Either 80 characters are entered

 The ENTER key is detected

Notes About
the C-String
Input and
Output
Example (2)

 All characters encountered by cin.getline(), except newline
character, are stored in message array

 Before returning, cin.getline() function appends a NULL character,
'\0', to the stored set of characters

 cout object is used to display the C-string

Reasons for
Using a string
Class Object

 Automatic bounds checking on every index used to access string
elements

 The string class automatically expands and contracts storage as
needed

 The string class provides a rich set of methods for operating on a
string

 Easy to convert to a C-string using c_str()

Reasons for
Using C-
Strings

 Programmer has ultimate control over how string is stored and
manipulated

 Large number of extremely useful functions exist to input,
examine, and process C-strings

 C-strings are an excellent way to explore advanced programming
techniques using pointers (Chapter 14)

 You will encounter them throughout your programming career, as
they are embedded in almost all existing C++ code

 They are fun to program

C-String
Processing

 C-strings can be manipulated by using either standard library
functions or standard array-processing techniques

 Library functions presented in the next section

 First look at processing a string in a character-by-character fashion
 Will allow us to understand how standard library functions are

constructed and to create our own library functions

 Example: strcopy() copies contents of string2 to string1

strcopy ()

// copy string2 to string1
void strcopy(char string1[], char string2[])
{
int i = 0;
while (string2[i] != '\0')
{

string1[i] = string2[i];
i++;

}
string1[i] = '\0';
return;

}

Main Features
of strcopy ()

 The two strings are passed to strcopy as arrays

 Each element of string2 is assigned to the equivalent element of
string1 until end-of-string marker is encountered

 Detection of NULL character forces termination of the while loop
that controls the copying of elements

 Because NULL character is not copied from string2 to string1, the
last statement in strcopy() appends an end-of-string character to
string1

Character-by-
Character
Input

 C-strings can be entered and displayed using character-by-
character techniques

 We can use cin.get() to accept a string one character at a time
 Replace cin.getline() function

 Characters will be read and stored in message array, provided:

 Number of characters is less than 81

 Newline character is not encountered

Pointers and C-
String Library
Functions

 Pointers are very useful in constructing functions that manipulate
C-strings

 When pointers are used in place of subscripts to access individual
C-string characters, resulting statements are more compact and
efficient

 Consider strcopy() function from a few slides back
 Two modifications necessary before converting to a pointer

version…

Possible
Modifications
of strcopy ()

 Modification 1: eliminate (string2[I] != ‘\0’) test from while
statement

 This statement only false when end-of-string character is
encountered

 Test can be replaced by (string2[I])

 Modification 2: include assignment inside test portion of while
statement

 Eliminates need to terminate copied string with NULL character

Pointer and C-
String Library
Function
Version of
strcopy ()

void strcopy(char *string1, char *string2)
{

while (*string1 = *string2)
{

string1++;
string2++;

}
return;

}

Library
Functions

 C++ does not provide built-in operations for complete arrays (such
as array assignments)

 Assignment and relational operations are not provided for C-
strings

 Extensive collections of C-string handling functions and routines
included with all C++ compilers

 These functions and routines provide for C-string assignment,
comparison and other operations

Commonly
Used Library
Functions:
strcpy ()

 strcpy(): copies a source C-string expression into a destination C-
string variable

 Example: strcpy(string1, "Hello World!") copies source string literal
"Hello World!" into destination C-string variable string1

Commonly
Used Library
Functions:
strcat ()

 strcat(): appends a string expression onto the end of a C-string
variable

 Example: strcat(dest_string, " there World!")

Commonly
Used Library
Functions:
strlen ()

 strlen(): returns the number of characters in its C-string parameter
(not including NULL character)

 Example: value returned by strlen("Hello World!") is 12

Commonly
Used Library
Functions:
strcmp ()

 strcmp(): compares two C-string expressions for equality
 When two C-strings are compared, individual characters are

compared a pair at a time

 If no differences found, strings are equal

 If a difference is found, string with the first lower character is
considered smaller string

 Example: "Hello" is greater than "Goodbye" (first 'H' in Hello greater
than first 'G' in Goodbye)

Character
Routines

 Character-handling routines: provided by C++ compilers in
addition to C-string manipulation functions

 Prototypes for routines are contained in header file cctype; should
be included in any program that uses them

Conversion
Routines

 Used to convert strings to and from integer and double-precision
data types

 Prototypes for routines contained in header file cstdlib;
 cstdlib should be included in any program that uses these routines

String
Conversion
Routines

Prototype Description Example

int atoi (stringExp) Convert an ASCII string to an integer;
conversion stops at the first non-
integer character

atoi (“1234”);

double atof (stringExp) Convert an ASCII string to a double-
precision number; conversion stops at
the first character that cannot be
interpreted as a double

atof (“12.34”);

char [] itoa (stringExp) Convert an integer to an ASCII string;
the space allocated for the returned
string must be large enough for the
converted value

itoa (1234)

C-String
Definitions and
Pointer Arrays

 The definition of a C-string automatically involves a pointer

 Example: definition char message1[80];
 Reserves storage for 80 characters

 Automatically creates a pointer constant, message1, that contains
the address of message1[0]

 Address associated with the pointer constant cannot be changed

 It must always “point to” the beginning of the created array

C-String
Definitions and
Pointer Arrays
(2)

 Also possible to create C-string using a pointer
 Example: definition char *message2; creates a pointer to a character

 message2 is a true pointer variable

 Once a pointer to a character is defined, assignment statements,
such as message2 = "this is a string";, can be made

 message2, which is a pointer, receives address of the first character
in the string

C-String
Definitions and
Pointer Arrays
(3)

 Main difference in the definitions of message1 as an array and
message2 as a pointer is the way the pointer is created

 char message1[80]explicitly calls for a fixed amount of storage for
the array

 Compiler creates a pointer constant

 char *message2 explicitly creates a pointer variable first
 Pointer holds the address of a C-string when the C-string is actually

specified

C-String
Definitions and
Pointer Arrays
(4)

 Defining message2 as a pointer to a character allows C-string
assignments

 message2 = "this is a string"; is valid

 Similar assignments not allowed for C-strings defined as arrays
 message1 = "this is a string"; is not valid

 Both definitions allow initializations using string literals such as:

char message1[80] = "this is a string";

char *message2 = "this is a string";

C-String
Definitions and
Pointer Arrays
(5)

 Allocation of space for message1 different from that for message2

 Both initializations cause computer to store same C-string
internally

 message1 storage:
 Specific set of 80 storage locations reserved; first 17 locations

initialized

 Different C-strings can be stored, but each string overwrites
previously stored characters

 Same is not true for message2

C-String
Definitions and
Pointer Arrays
(6)

 Definition of message2 reserves enough storage for one pointer
 Initialization then causes the string literal to be stored in memory

 Address of the string’s first character (‘t’) is loaded into the pointer

 If a later assignment is made to message2, the initial C-string
remains in memory; new storage locations allocated to new C-string

C-String
Storage
Allocation

C-String
Storage
Allocation (2)

Pointer Arrays

 Declaration of an array of character pointers is an extremely useful
extension to single string pointer declarations

 Declaration char *seasons[4]; creates an array of four elements;
each element is a pointer to a character.

 Each pointer can be assigned to point to a string using string
assignment statements

 seasons[0] = "Winter";

 seasons[1] = "Spring";

 seasons[2] = "Summer";

 seasons[3] = "Fall"; // note: string lengths may differ

Pointer Arrays
(2)

 The seasons array does not contain actual strings assigned to the
pointers

 Strings stored in data area allocated to the program

 Array of pointers contains only the addresses of the starting
location for each string

 Initializations of the seasons array can also be put within array
definition:

char *seasons[4] = {"Winter",

"Spring",

"Summer",

"Fall"};

Pointer Arrays
(3)

Common
Programming
Errors

 Using a pointer to point to a nonexistent data element

 Not providing enough storage for a C-string to be stored

 Misunderstanding of terminology
 Example: if text is defined as char *text;

 Variable text is sometimes called a string

 text is not a string; it is a pointer that contains the address of the first
character in the C-string

Summary

 A C-string is an array of characters that is terminated by the NULL
character

 C-strings can always be processed using standard array-
processing techniques

 The cin, cin.get(), and cin.getline() routines can be used to input a
C-string

 The cout object can be used to display C-strings

 Pointer notation and pointer arithmetic are useful for
manipulating C-string elements

Summary (2)

 Many standard library functions exist for processing C-strings as a
complete unit

 C-string storage can be created by declaring an array of characters
or by declaring and initializing a pointer to a character

 Arrays can be initialized using a string literal assignment of the
form

char *arr_name[] = "text";

 This initialization is equivalent to

char *arr_name[] = {'t','e','x','t','\0'};

