Circles A, B, C are externally tangent to each other and internally tangent to circle D. Circles B, C are congruent. Circle A has radius 1 and passes through center of circle D.

Find radius of circle B.

$EF = 1$ is given.

Radius of Circle B is $\frac{8}{9}$.

Let E, H, F be the centers of circles A, B, D, respectively.
Let G be point of tangency of circles B and C.
Let $FG = x$ and $GH = y = HS$, both radii of circle B.

Since $EF = 1$ and F is the center \rightarrow radius of D, big circle, is 2.
So $FK = 2$, so since $HK = y$, we know $FH = 2 - y$.

Pythagorean Theorem

$AEGH \rightarrow y^2 + (x + 1)^2 = (y + 1)^2$

$y^2 + x^2 + 2x + 1 = y^2 + 2y + 1$

$x^2 + 2x = 2y^2 \rightarrow \text{both } = 2y$

$x^2 + 2x = \frac{2y}{2} \rightarrow \text{both } = 2y$

$\Delta GFH \rightarrow x^2 + y^2 = (2 - y)^2$

$x^2 + y^2 = 4 - 4y + y^2$

$4y = 4 - x^2$

$2y = 2 - \frac{1}{2}x^2$

$x^2 + 2x = 2 - \frac{1}{2}x^2$

$2x^2 + 4x = 4 - x^2$

$3x^2 + 4x - 4 = 0$

$3x - 2)(x + 2) = 0$

$x = \frac{2}{3}, x = -2$

$x = \frac{2}{3}$

$4y = 4 - \left(\frac{2}{3}\right)^2$

$y = 4 - \frac{4}{9}$

$y = \frac{8}{9}$.
<table>
<thead>
<tr>
<th>Five Possible Cases</th>
<th>A says "D is murder!"</th>
<th>B says "D is innocent"</th>
<th>C says "It wasn't E"</th>
<th>D says "A is lyin'"</th>
<th>E says "B is telling T"</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) A is killer</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>2) B is killer</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>3) C is killer</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>4) D is killer</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>*5) E is killer</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Check each statement's truthfulness for each of the five cases. We need a horizontal row with 2 Fs and 3 Ts.

(E must be the killer)