GRAPHS OF INEQUALITIES

19. Graph the solution set of the linear inequality in one variable: $2x + 1 > 4$.

To graph the solution set of an inequality in one variable, we use a number line. To graph the solution set of an inequality in two variables, we use a rectangular coordinate system.

20. Graph the solution set of the linear inequality in two variables: $2x + y \geq 4$. See graphing answer section.

CHAPTER REVIEW

SECTION 4.1

CONCEPTS

To solve an inequality, apply the properties of inequalities. If both sides of an inequality are multiplied (or divided) by a negative number, another inequality results, but with the opposite direction from the original inequality.

The graph of a set of real numbers that is a portion of a number line is called an interval.

Solving Linear Inequalities

REVIEW EXERCISES

Solve each inequality. Give each solution set in interval notation and graph it. See graphing answer section.

1. $5(x - 2) \leq 5 \to x \leq 3$
2. $0.3x - 0.4 \geq 1.2 - 0.1x$
3. $-16 < -\frac{4}{5}x \to x > 20$
4. $\frac{7}{4} (x + 3) < \frac{3}{8} (x - 3)$
5. $7 - [6t - 5(t - 3)] > 2(t - 3) - 3(t + 1)$
6. $\frac{2b + 7}{2} \leq \frac{3b - 1}{3}$

7. Explain how to use the graph of $y = 1$ and $y = x - 3$ to solve $x - 3 \leq 1$.

8. INVESTMENTS A woman has invested $10,000 at 6% annual interest. How much more must she invest at 7% so that her annual income is at least $2,000? $20,000 or more

SECTION 4.2

A solution of a compound inequality containing and makes both of the inequalities true.

Solving Compound Inequalities

Determine whether -4 is a solution of the compound inequality.

9. $x < 0 \text{ and } x > -5 \to \text{yes}$
10. $x + 3 < -3x - 1 \text{ and } 4x - 3 > 3x \to \text{no}$

Graph each set. See graphing answer section.

11. $(-3, 3) \cup [1, 6]$
12. $(-\infty, 2] \cap [1, 4)$
Solve each compound inequality. Give the result in interval notation and graph the solution set. See graphing answer section.

13. \(-2x > 8 \text{ and } x + 4 \geq -6\) \((-10, -4]\)

14. \(5(x + 2) \leq 4(x + 1) \text{ and } 11 + x < 0\) \((-\infty, -4]\)

15. \(\frac{2}{5} x - 2 < -\frac{4}{5} \text{ and } \frac{x}{-3} < -1\) \(\emptyset\)

16. \(4\left(x - \frac{1}{4}\right) \leq 3x - 1 \text{ and } x \geq 0\) \([0, 0]\)

Solve each double inequality. Give the result in interval notation and graph the solution set. See graphing answer section.

17. \(3 < 3x + 4 < 10\) \((-\frac{1}{3}, 2]\)

18. \(-2 \leq \frac{5 - x}{2} \leq 2\) \([1, 7]\)

Determine whether \(-4\) is a solution of the compound inequality.

19. \(x < 1.6\) or \(x > -3.9\) yes

20. \(x + 1 < 2x - 1\) or \(4x - 3 > 3x\) no

Solve each compound inequality. Give the result in interval notation and graph the solution set. See graphing answer section.

21. \(x + 1 < -4\) or \(x - 4 > 0\) \((-\infty, -5) \cup (4, \infty)\)

22. \(x + 3 > -2\) or \(4 - x > 4\) \((2, \infty)\)

23. INTERIOR DECORATING A manufacturer makes a line of decorator rugs that are 4 feet wide and of varying lengths \(l\) (in feet). The floor area covered by the rugs ranges from 17 ft² to 25 ft². Write and then solve a double linear inequality to find the range of the lengths of the rugs. \(17 \leq 4l \leq 25\), \(4.25 \leq l \leq 6.25\) ft

24. Match each word in Column I with two items in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. or ii. iv</td>
<td>i. (\cap)</td>
</tr>
<tr>
<td>b. and i. iii</td>
<td>ii. (\cup)</td>
</tr>
<tr>
<td>(\cap)</td>
<td>iii. intersection</td>
</tr>
<tr>
<td>(\cup)</td>
<td>iv. union</td>
</tr>
</tbody>
</table>

SECTION 4.3

Solving Absolute Value Equations and Inequalities

Solve each absolute value equation.

25. \(|4x| = 8\) \(x = 2, -2\)

26. \(2|3x + 1| - 1 = 19\) \(x = 3\)

27. \(\left|\frac{3}{2}x - 4\right| - 10 = -1\) \(26 \div 3 \cdot -10 = 3\)

28. \(\left|\frac{2 - x}{3}\right| = -4\) no solution

29. \(3x + 2 = |2x - 3|\) \(\frac{1}{5}, -5\)

30. \(\left|\frac{2(1 - x) + 1}{2}\right| = \left|\frac{3x - 2}{3}\right|\) \(x = \frac{13}{12}\)
Absolute value inequalities: For \(k > 0 \) and any algebraic expression \(X \):

\[|X| < k \] is equivalent to \(-k < X < k \)

\[|X| > k \] is equivalent to \(X < -k \) or \(X > k \)

31. \(|x| \leq 3 \quad [\text{Interval: } [-3, 3]] \)

32. \(2x + 7 < 3 \)

33. \(2|5 - 3x| \leq 28 \quad \left[\text{Interval: } [-3, \frac{19}{3}]\right] \)

34. \(\frac{2}{3}x + 14 > 6 < 6 \) \quad \text{no solution}

35. \(|x| > 1 \quad [\text{Interval: } (-\infty, -1) \cup (1, \infty)] \)

36. \(\frac{1 - 5x}{3} \geq 7 \)

37. \(3x - 8 - 4 > 0 \quad \left[\text{Interval: } (-\infty, \frac{4}{3}] \cup (4, \infty)\right] \)

38. \(\frac{3}{2}x - 14 \geq 0 \quad [\text{Interval: } 1 - \infty, 14] \)

39. Explain why \(|0.04x - 8.8| < -2 \) has no solution. Since \(0.04x - 8.8 \) is always greater than or equal to 0 for any real number \(x \), this absolute value inequality has no solution.

40. Explain why the solution set of \(\left| \frac{3x}{50} + \frac{1}{45} \right| \geq -\frac{4}{5} \) is the set of all real numbers. Since \(\frac{3x}{50} + \frac{1}{45} \) is always greater than or equal to 0 for any real number \(x \), this absolute value inequality is true for all real numbers.

41. PRODUCE Before packing, freshly picked tomatoes are weighed on the scale shown. Tomatoes having a weight \(w \) (in ounces) that falls within the highlighted range are sold to grocery stores.

a. Express this acceptable weight range using an absolute value inequality.

\[w - 8 \geq 2 \]

b. Solve the inequality and express this range as an interval. [6, 10]

42. Let \(f(x) = \frac{1}{3} |6x| - 1 \). For what value(s) of \(x \) is \(f(x) = 5 \)? \(3, -3 \)

SECTION 4.4

Linear Inequalities in Two Variables

Graph each inequality in the rectangular coordinate system. See graphing answer section.

43. \(2x + 3y > 6 \)

44. \(y \leq 4 - x \)

45. \(y < \frac{1}{2}x \)

46. \(x \geq -\frac{3}{2} \)

47. CONCERT TICKETS Tickets to a concert cost $6 for reserved seats and $4 for general admission. If receipts must be at least $10,200 to meet expenses, find an inequality that shows the possible ways that the box office can sell reserved seats \(x \) and general admission tickets \(y \). Then graph the inequality for nonnegative values of \(x \) and \(y \) and give three ordered pairs that satisfy the inequality. \(6x + 4y \geq 10,200 \); \((1,800, 0), (1,000, 1,500), (2,000, 2,000) \)

48. Find the equation of the boundary line. Then give the inequality whose graph is shown. \(3x - 4y \leq 12 \)
Systems of Linear Inequalities

Graph the solution set of each system of inequalities.

49. \[
\begin{align*}
 y &\geq x + 1 \\
3x + 2y &< 6
\end{align*}
\]

50. \[
\begin{align*}
 x - y &< 3 \\
y &\leq 0 \\
x &\geq 0
\end{align*}
\]

Graph each compound inequality in the rectangular coordinate system.

51. \[-2 < x < 4\]

52. \[y \leq -2 \text{ or } y > 1\]

53. PETROLEUM EXPLORATION
Organic matter converts to oil and gas within a specific range of temperature and depth called the petroleum window. The petroleum window shown can be described by a system of linear inequalities, where \(x\) is the temperature in °C of the soil at a depth of \(y\) meters. Determine what inequality symbol should be inserted in each blank.

\[
\begin{align*}
x &\geq 35 \\
x &\leq 130 \\
y &\geq -56x + 280 \\
y &\leq -18x + 90
\end{align*}
\]

54. In the illustration, the solution of one linear inequality is shaded in red, and the solution of a second is shaded in blue. Decide whether a true or false statement results if the coordinates of the given point are substituted into the given inequality.

a. \(A\), inequality 1 \hspace{1cm} true
b. \(A\), inequality 2 \hspace{1cm} false
c. \(B\), inequality 1 \hspace{1cm} true
d. \(B\), inequality 2 \hspace{1cm} false
e. \(C\), inequality 1 \hspace{1cm} true
f. \(C\), inequality 2 \hspace{1cm} true

CHAPTER 4 TEST

1. Decide whether the statement is true or false.
\(-5.67 \geq -5\) \hspace{1cm} false

2. Decide whether \(-2\) is a solution of the inequality.

\[3(x - 2) \leq 2(x + 7)\] \hspace{1cm} yes

3. \[7 < \frac{2}{3}x - 1\] \hspace{1cm} \((12, \infty)\)

4. \[-2(2x + 3) \geq 14\] \hspace{1cm} \((-\infty, -5]\)