\[y - k = A \cos(B(x - h)) \] where \(A > 0 \)

The locations of the axes \((x = 0, y = 0)\) depend upon the relationships between \(k \) & \(A \) and \(h \) & \(B \).

\[y - k = A \sin(B(x - h)) \] where \(A > 0 \), \(B > 0 \)

As above, the locations of the axes depend upon the relationships between \(k \) & \(A \) and \(h \) & \(B \).
As above, the locations of the axes depend upon the relationships between k & A and h & B.

\[y - k = \text{Atan}(B(x - h)) \quad A > 0, \: B > 0 \]