METHODS OF INTEGRATION
Keep this sheet handy for the rest of your life.

1) To integrate $x^n e^{ax}$, $x^n \sin(ax)$, or $x^n \cos(ax)$ where n is a positive integer and a is a constant, integrate by parts n times, differentiating the power of x and integrating the second part.

2) To integrate $x^n \ln x$, where n is an integer, integrate by parts, differentiating the logarithmic term.

3) To integrate products of e^{ax}, $\sin(bx)$, $\cos(cx)$, where $a, b, &c$ are constants, integrate by parts twice. This will yield an equation that can be solved for the original integral.

4) To integrate $\sin^n x \cos^m x$:
 - **If n is odd**: Change all but one sine to cosines using $\sin^2 x = 1 - \cos^2 x$, then use the substitution $u = \cos x$.
 - **If m is odd**: Change all but one cosine to sines using $\cos^2 x = 1 - \sin^2 x$, then use the substitution $u = \sin x$.
 - **If both m and n are even**: Express the integrand in terms of either cosines or sines (but not both) using $\sin^2 x + \cos^2 x = 1$ or $\sin^2 x = \frac{1}{2} (1 - \cos 2x)$, then integrate directly where possible or use repeated integration by parts.

5) To integrate $\sin(ax)\sin(bx)$, $\sin(ax)\cos(bx)$, or $\cos(ax)\cos(bx)$, use one of the following:
 - $\sin A \sin B = \frac{1}{2} [\cos(A-B) - \cos(A+B)]$
 - $\cos A \cos B = \frac{1}{2} [\cos(A-B) + \cos(A+B)]$
 - $\sin A \cos B = \frac{1}{2} [\sin(A-B) + \sin(A+B)]$.

6) To integrate $\tan^m x \sec^n x$:
 - **If m is odd**: Make the substitution $u = \sec x$. Change all but one tangent term to secant using the identity $\tan^2 x = \sec^2 x - 1$.
 - **If n is even**: Make the substitution $u = \tan x$. Change all but two secant terms to tangent using the identity $\sec^2 x = \tan^2 x + 1$.
 - **If m is even and n is odd**: Change all of the tangent terms to secant and integrate using repeated integration by parts.
7) Integrals containing $\sqrt{a^2 - x^2}$, $\sqrt{x^2 + a^2}$, or $\sqrt{x^2 - a^2}$ can be integrated using the following triangles to make trigonometric substitutions:

\[x = \sin \theta \]
\[x = \tan \theta \]
\[x = \sec \theta \]

8) For integrals with quadratics $(ax^2 + bx + c)$ one should complete the square. If you are lucky, the resulting expression will be integrable (though maybe not in a single step).