Homework
(to accompany section 8.6)

1. Solve this matrix equation:
\[
\begin{bmatrix}
2 & 3 \\
4 & 7
\end{bmatrix}
\begin{bmatrix}
x & a & u & w \\
y & b & v & z
\end{bmatrix}
=
\begin{bmatrix}
-2 & 11 & 8 & -6 \\
-8 & 25 & 19 & -14
\end{bmatrix}
\]

2. Solve this matrix equation:
\[
\begin{bmatrix}
-4 & -4 & 5 \\
1 & 1 & -1 \\
5 & 4 & -6
\end{bmatrix}
\begin{bmatrix}
a & x \\
b & y \\
c & z
\end{bmatrix}
=
\begin{bmatrix}
1 & 1 \\
0 & 0 \\
1 & -1
\end{bmatrix}
\]

3. The members of the Emerson family take 2 kinds of vitamin supplements. The pink capsules contain 45 units of vitamin C and 10 units of vitamin E. The green tablets contain 9 units of vitamin C and 6 units of vitamin E. Mom takes 153 units of vitamin C and 42 units of vitamin E. Dad takes 126 units of vitamin C and 44 units of vitamin E. Child #1 takes 72 units of vitamin C and 28 units of vitamin E. Child #2 takes 99 units of vitamin C and 26 units of vitamin E.

a) Set up a set of equations which describes this situation. (Be sure to define your variables clearly.)

b) Express the system(s) of equations you found in part a) as a matrix equation of the form \(AX = B \).

c) Find the inverse of the coefficient matrix \(A \) and use it to solve the matrix equation in part b). How many pills of each type (color) does each member of the Emerson family take?

Answers

1. \[
\begin{bmatrix}
x & a & u & w \\
y & b & v & z
\end{bmatrix}
=
\begin{bmatrix}
5 & 1 & -1/2 & 0 \\
-4 & 3 & 3 & -2
\end{bmatrix}
\]

2. \[
\begin{bmatrix}
a & x \\
b & y \\
c & z
\end{bmatrix}
=
\begin{bmatrix}
3 & 1 \\
-2 & 0 \\
1 & 1
\end{bmatrix}
\]

3. Mom takes 3 pink pills and 2 green ones. Dad takes 2 pink pills and 4 green ones. Child #1 takes 1 pink pill and 3 green ones. Child #2 takes 2 pink pills and 1 green one.