O2 CO2 Needs IB

- Ventilation
 - Movement of gas into and out of lungs
 - Inhalation
 - Exhalation
 - Passive
- Chronic Obstructive Lung Disease COPD
 - Lungs lose their elastic recoil
 - Work of breathing goes up
 - Patients need to use accessory muscles
 - Causes fatigue
- Perfusion
 - The ability of the cardiovascular system to pump oxygenated blood to the tissues
- Diffusion
 - Movement of oxygen and CO2 between alveoli and RBCs in pulmonary circulation
- Assessment of client with abnormal O2 CO2 exchange
 - Chest wall function
 - Pregnancy
 - Position
 - Obesity
 - Musculoskeletal Abnormalities
 - Curvature of the spine
 - Lordosis, Kyphosis, Scoliosis
 - Nervous System
 - PNS - Myasthenia Gravis, Guillaine Barre, Polio
 - CNS = Trauma and Spinal Cord Injury
- Chronic Diseases
 - COPD
 - Pneumonia
 - Lung cancer
 - Asbestos exposure
 - Smoking history
 - Calculate pack year history
 - Substance abuse
 - Inadequate nutrition
- Cardiovascular Function
 - Failure of the Pump
 - Conduction disturbances
 - Valve malfunctions
 - MI Cardiomyopathy
- Other factors
 - Increased O2 demand
 - Pregnancy
 - Exercise
 - Increased metabolic rate e.g. hyperthyroidism
- Changes in Respiratory Function
• Hypoventilation
 ▪ Inadequate alveolar ventilation to meet body’s oxygen needs
 ▪ Cause – Atelectasis
• Hyperventilation
 ▪ Excess of ventilation required to eliminate CO2
 ▪ Causes: Anxiety, infections, drugs, acid-base imbalances, chest pain, SOB, PE, shock, fever
• Hypoxia
 ▪ Inadequate oxygen at the cellular level
 ▪ Causes
 • Anemia
 • Hypovolemia
 • Deficiency in delivery e.g. CO poisoning
 • Inability of tissues to extract O2
 • Decreased blood perfusion of alveoli
 • Poor tissue perfusion
 • Impaired ventilation
 • Decreased inspired air concentration

• Signs and Symptoms of Hypoxia
 • Restlessness, apprehension, inability to concentrate
 • ↓ LOC, dizziness
 • Fatigue
 • Pallor → →
 • Clubbing
 • Dyspnea
 • ↑ RR
 • Cyanosis

• Head to Toe Assessment
 • LOC – confused, apprehensive, disoriented, combativeness, coma
 • Eyes - pale conjunctiva, fear, blurred vision
 • Mouth
 ▪ Cyanosis
 ▪ Pursed lip breathing
 • Neck – neck vein distention
 • Nose – nasal flaring, sputum
 • Cyanosis
 • Nasal flaring
 • Chest – retraction, asymmetry, Use of accessory muscles
 • Skin – cyanosis, pallor, cool, clammy, diaphoretic
 • Finger tips – clubbing, cyanosis
 • Lung
 ▪ Lungs sounds – adventitious sounds, noisy respirations
 ▪ Pain with inspiration, cough, sputum, hemoptysis
 ▪ Dyspnea with exertion (early), with rest (late)
 ▪ Clubbing
 ▪ Accessory Muscles
- Vitals – orthopnea, ↑breathlessness, ↑ HR, hypotension (very late)
- Other
 - Fatigue
 - Decreased urinary output (late)
 - Tripod position
 - Unable to speak without pausing for breath

- **Other Diagnostics**
 - **Complete Blood Count CBC**
 - **Hemoglobin**
 - Reflects amount of Hgb available for combination with O2
 - 13.5-18 g/L Men
 - 12-16 g/L Women
 - **Hematocrit**
 - Ratio of RBC to plasma
 - 40-54% men
 - 38-47% women
 - **Arterial Blood Gases**
 - Sample of arterial blood
 - Invasive procedure – Normal Value
 - pH 3.5-4.5
 - PaO2 - 80-100 mmHg
 - PaCo2 – 35-45 mmHg
 - HCO3 22-26 mmHg
 - SaO2 >95%
 - PaO2 – ↓ with advancing age
 - Mild hypoxemia – 60-79 mmHg
 - Moderate – 40-59 mmHg
 - Severe – below 40
 - **Pulse Oximetry**
 - Well oxygenated blood absorbs light differently than deoxygenated blood
 - Oximeter calculates saturation
 - Normal >95%
 - 90 adequate
 - 88 Adequate if no cardiac problems
 - 75 inadequate
 - <75 Requires immediate intervention
 - Factors which skew reading
 - Motion artifact
 - Ambient light
 - Fingernail polish
 - Mechanical problems
 - Anemia
 - Determining overall O2 carrying capacity
 - Total amount of O2 carried in blood should be between 19-20 mL/dL
 - Each gram of Hgb carries 1.34 mL of oxygen
 - Multiply Hgb by 1.34
 - E.g. Mrs. Weston, Hgb 15, O2 sat 97%
1.34 x 15 = 19.5 mL/dL (normal)
 Mr Bachus, Hgb 11, O2 sat
 1.34 x 11 = 14.03 mL/dL (far below normal)

Pulmonary Function Tests
- Tidal Volume
- Residual Volume
- Functional Residual Capacity
- Vital Capacity
- Total Lung Capacity
- Peak Expiratory Flow Rates

Incentive Spirometer
- Encourages voluntary deep breathing
- Pt inhales slowly with even flow
- Device indicates volume of breath

Diagnostic tests
- X-ray
- Bronchoscopy
- Lung Scan
- Lung VQ Scans

Other Tests
- Throat culture
- Sputum culture
- Blood culture
- Acid Fast Bacillus
- PPD
- Thoracentesis

Postural Drainage

Chest Percussion

Hyperbaric Oxygenation
- Inhaled oxygen – higher than normal pressures
- Supersaturates Hgb
- Oxygen also passes directly through skin
- Used in
 - Wound healing
 - Carbon monoxide poisoning
 - Hypoxia
 - Gas Gangrene
 - Osteomyelitis

Oxygen Delivery Equipment
- Safety - FIRE
 - Toxicity
- Nasal Cannula (2 to 6 L/min)
- Face Mask 5 to 8 L/min 40-60% O2
- Non-rebreather mask, 10-15 L/min, 95-100% O2
- Venturi Mask