Diabetes

- Hormones of the Pancreas
 - Alpha Cells – glucagon
 - Secreted in response to ↓ blood glucose, ↓ protein intake, exercise, low CHO diet
 - Delta Cells – somatostatin
 - Inhibits glucagons and insulin
 - Beta Cells – insulin
 - Secreted in response to ↑ blood glucose
 - Regulates CHO
 - Promotes ↓ blood glucose by
 - Glycogenesis
 - Transporting glucose into cells
 - Inhibiting glycogenolysis
 - Insulin
 - Binds to insulin receptors in
 - Skeletal muscle
 - Liver
 - Adipose tissue
 - This allows for a cascade of events to occur that allows glucose to move from the bloodstream into the cell.
 - Insulin promotes
 - Lipogenesis but inhibits release of fatty acids from adipose tissue
 - Protein synthesis
 - Promotes movement of K+ and Mg+ into cells
 - Stimulates triglyceride synthesis

- Regulation of blood glucose
 - Insulin - ↓ blood glucose
 - Counter-regulatory hormones
 - Glucagon - ↑ blood glucose
 - Epinephrine - ↑ blood glucose
 - Growth hormone – ↑ blood glucose
 - Glucocorticoids (cortisol) - ↑ blood glucose

Diabetes
- Definition
 - Affects body’s ability to control and utilize its supply of fuel (glucose)
 - Chronic disorder of CHO, fat and protein metabolism characterized by development of vascular lesions and neuropathy
- Classification of DM
 - 11 different types
 - Not based on treatment but degree and causes of hyperglycemia
 - Diagnostic Criteria
 - Fasting blood sugar = or > 126mg/dl OR
 - Random plasma glucose = or > 200mg/dl OR
 - Plasma glucose 2 hours after a glucose challenge is = or > 200mg/dl
• Symptoms of DM,
 o 3 Ps or unexplained weight loss
• Pathophysiology
 o Insulin deficiency
 ▪ Absolute – pancreas produces no insulin or very little insulin. (Type 1 DM)
 ▪ Relative – pancreas produces normal or excessive amounts of insulin but body
 is unable to use it effectively. This is called insulin resistance. (Type 2 DM)
 o This insulin deficiency (absolute or relative) results in the abnormal metabolism of
 body fuels.
 o DM is a disease that affects how the body uses all foods (CHO, proteins and fats) not
 just sugars.
• Consequence of Insulin Deficiency
 o Liver
 ▪ Hyperglycemia
 ▪ Hypertriglyceridemia
 ▪ Ketone production
 o Skeletal Muscle
 ▪ Failure of glucose uptake
 ▪ Failure of amino acid uptake
 ▪ Consequence of Insulin Deficiency
 o Adipose tissue
 ▪ Lipolysis
 ▪ Elevated free fatty acids in the circulation
 o Kidneys
 ▪ Renal threshold is 180mg/dl –
 ▪ Excessive glucose attracts water – osmotic diuresis occurs resulting in
 polyuria.
 ▪ Polyuria also causes electrolyte loss (NA+, K+, Cl+, Phosphorus)
 ▪ Loss of water stimulates thirst center causing polydipsia.
 • Cells are starved of fuel so pt. is excessively hungry and eats a lot more – polyphagia

• Type 1 patients lose weight rapidly since they cannot use glucose for metabolism, fats and
 muscle tissues are catabolized.
• Type 2 pts. Do not have major weight loss because they produce some insulin, therefore they
 do not catabolize fat and muscle tissue. Type 2 pts are mostly obese.

Type 1
• Usually early onset
• Destruction of beta cells
• Viruses thought to stimulate an autoimmune response
• Presence of islet cell antibodies
• Genetics
• Islet showing Ab to insulin
Type 2
• Causes
 o Insulin resistance
 o Beta cell exhaustion
 o Excessive hepatic glucose
- 90% diabetics
- Usually (not always) late onset

Etiology
- Family history
- Prior history of impaired glucose tolerance (IGT)
- Gestational DM (GDM) especially in obese individuals
- Glucotoxicity - hyperglycemia has an effect on pancreatic islets
- Insulin resistance – inability of insulin sensitive tissues to respond normally to insulin-stimulated glucose uptake

Type 1 S/S
- 3 Ps more typical in type 1
- Weakness, fatigue and weight loss
- Visual blurring
- Breakdown of fat and protein for food
- ketones \(\rightarrow\) ketoacidosis

Type 2 S/S
- Gradual onset of symptoms
- Weight gain
- Sufficient endogenous insulin to prevent ketone formation
- Fatigue, weakness, disturbed vision
- Complications
- Peripheral neuropathy
- Recurrent infection
- Lipedemias, Obesity, HTN and CV disease
- Coma

Diagnostic Tests
- Fasting blood sugar 126 mg/dL
- Impaired Glucose Tolerance Test (GTT) or post prandial >200mg/dL
- Two hour postprandial blood sugar of 140mg/dl – 200mg/dl
- Glycosylated hemoglobin HbA1c
- Reflects the average blood glucose level over last three months
- Glucose in the blood attaches to HGB. Once attached, it remains for the life span of the HGB cell.
- Urine Ketone Monitoring
 - Type I
 - When ill
 - HBGM > 300 mg/dl
 - Type II
 - When ill (may be present if acutely ill)
 - Urine Ketone Monitoring
 - Positive ketones require prompt medical attention
- Ankle – Brachial Indices
 - An assessment of PVD and risk for.
 - If possible, perform this test on your patient in the clinical setting.
 - Doppler BP at radial artery bilaterally
 - Doppler BP at the dorsalis pedis and posterior tibial bilaterally
• Calculate index for each pedal site
 • Ankle pressure divided by brachial artery pressure
 • An index > 1.2 indicates calcific disease

Interventions

- Control of hyperglycemia
 - Diet
 - Exercise

- Type I Treatment
 - Diet, Exercise and Medication
 - Dietary CHO and exercise must be coordinated with insulin action so that
 - Insulin as available for optimal metabolism when food is eaten and absorbed
 - Food is available when insulin is acting to prevent hypoglycemic reactions
 - Exercise must be planned for and adequate amounts of CHO must be available
 - Monitoring (short term control)

- Home Based Glucose Monitoring (HBGM)
 - 4 times a day – 12 times a day

Type I Diabetics and Insulin

- Three properties of insulin – source, strength and type or kinetics
 - Source
 - Humulin derived from recombinant DNA technology (E Coli)
 - Novolin derived from recombinant DNA technology of bakers’ yeast
 - Why must insulin be given parenterally?
 - Strength
 - U 100
 - U 500 (not usually available)
 - Type or kinetics
 - Quick (Rapid)
 - Intermediate
 - Long Acting
 - Combination

- Insulin secreted by Pancreas
 - Basal
 - Prandial

- Quick Acting Insulin
 - Turn to table on Pg 940 in Phipps
 - Name the three quick insulins.
 - How are these insulins alike?
 - Which of these three are the most similar?
 - How are they similar? How are they different?
 - Which is the slowest of the quick insulins?
 - What time could you expect hypoglycemia after giving regular insulin?

- Intermediate Acting Insulins
 - Name the two intermediate insulins.
 - How are they alike? How are they different?
 - What is the difference between cloudy and turbid?
 - Which of these have you seen more of in the clinical setting?
 - Why are between meal snacks often given to diabetic patients?

- Long Acting Insulin
Name the two long acting insulins.
How are they alike? How are they different?
How many doses are needed per day when taking this kind of insulin?

Combination Insulin
Name the four combination insulins.
What is the difference between Humulin 50/50 and Humalog Mix 50/50?
What is the difference between Humalog and Lispro? (Davis Drug Guide)

Insulin (Onset/Peak/Duration)
- **Rapid Acting - Clear**
 - e.g. Lispro (Humalog)
 - e.g. Aspart (Novolog)
 - 15-30 min/60-90min/3-6hrs
- **Short Acting**
 - e.g. Regular (Humulin) – Clear
 - 0.5-1hr/2-4hr/5-7hr
- **Intermediate – Cloudy**
 - e.g. Humulin N, NPH (Protamine)
 - e.g. Humulin L, Lente (Zinc)
 - 1-2hr/4-12hr/18-28
- **Long Acting**
 - e.g. Humulin U, Ultralente (Zinc) - CLOUDY
 - 4-6 hr/18-20/24-36
 - e.g. Lantus – CLEAR
 - 1HR/5/24
 - 24 hour basal insulin control

Insulin requirements
- Increased requirements:
 - Growth
 - Pregnancy
 - Food intake
 - Stress e.g. Surgery, infection, illness
 - Some medications
- Decreased requirements:
 - food intake
 - Exercise
 - Some medications

Complications of Insulin Use
- Hypoglycemia – see later
- Lipodystrophies
- Lipoatrophy
- Lipohypertrophy
- Hypersensitivity (rare with DNA insulins)

Type 2 Treatment
Diet, Exercise and Oral Medication
- Pharmacotherapy is directed at:
Decreasing insulin resistance
Increasing insulin sensitization
Interfering with digestion and absorption of dietary CHO
Augmenting insulin secretion and action
Providing exogenous insulin

- **Biguanides E.g. Metformin (Glucophage)**
 - Decreases Hepatic Glucose Production
 - Helps endogenous insulin work better
 - Does not stimulate insulin secretion so it cannot cause hypoglycemia (monotherapy)
 - Used in obese pts with Type II
 - Average decrease in FBS is 60mg/dl
 - Average decrease in HbA1c approx 1.5 - 2%
 - Effectiveness decreases over time with beta cell failure
 - Risk of lactic acidosis
 - Take with meals to decrease n/v and diarrhea
 - Questions
 - Can a breast feeding mother take metformin?
 - Which antihypertensive drugs interact with metformin?
 - A child of 9 years is ordered Metformin is ordered 1000mg BID. Is this a safe dose?
 - After three months of metformin therapy combined with a sulfonylurea the patient’s BS is still uncontrolled. What might the physician order now?
 - What is the site of action of Glucophage?

- **Thiazolidenediones (Glitizones)**
 - Action is to increase insulin sensitivity at the tissue/cellular level. Enhances insulin action without stimulating insulin secretion
 - Monotherapy or adjunctive therapy
 - Average decrease in HbA1c approx 0.7 -2.5%
 - May cause weight gain
 - Monitor liver function
 - Questions
 - Name two thiazolidenediones.
 - Which glitizone would a young women on oral contraceptives not want to take? Why?
 - Can this drug cause hypoglycemia when used as monotherapy?
 - Which glitizone can cause increase in total cholesterol, HDL and LDL?
 - Which is the less expensive drug?

- **Alpha Glucosidase Inhibitors**
 - When taken with the first bite of food, helps decrease/slow absorption of CHO
 - Affects postprandial blood glucose
 - Lowers HbA1c by 0.5-1.5%
 - Major GI side effect is flatulence
 - Questions
 - Name two glucosidase inhibitors.
 - Why does this class of drug need to be taken with food?
 - What kind of patients can have drug/drug interactions when taking Precose?
 - What happens to the BS?
 - What is the main site of action of the glucosidase inhibitors?
 - What is a usual starting dose regime?
What is a maximum dose regime?
What is the approximate one month cost of Glyset?

- **Sulfonylureas**
 - Stimulates insulin secretion by pancreas
 - First, second and third generation sulfonylureas
 - Average decrease in FBS is 60mg/dl
 - Average decrease in HbA1c is 1.5 – 2%
 - Risk for hypoglycemia
 - Weight gain
 - Questions
 - Name three sulfonylureas.
 - What is the main site of action of the sulfonylureas
 - Name two frequent side effects of this class of drug.
 - What is a common ending of two of these drugs?
 - If you had to take one of this category of drug when pregnant, which would you want to take?
 - Why should this class of drug be administered with a meal?

- **Meglitinides**
 - Reduces post prandial glucose by stimulating burst of insulin from pancreas
 - Average decrease in FBS is 60mg/dl
 - Average decrease in HbA1c is 1.5 – 2%
 - Risk for hypoglycemia – less than with sulfonylureas
 - Questions
 - Name two drugs in this class.
 - What is the main site of action of this class of drug?
 - Name a life threatening side effect of this class of drug.
 - What lab tests should be performed to monitor the effectiveness of Repaglinide?
 - If pt is eating breakfast at 0730, what time should this Starlix be administered?
 - What strengths are available in Starlix tablets?

- **Combining Drugs**
 - A patient may be prescribed two different antidiabetic drugs. The drugs then work in two ways to promote euglycemia.
 - Glucovance is a combination of what two categories of drug?
 - What two drugs are in Glucovance?
 - What are the three strengths of Glucovance?

- **Hypoglycemia**
 - Blood glucose level < or = to 60mg/dl
 - Signs and Symptoms of Hypoglycemia
 - Adrenergic symptoms
 - Pallor, diaphoresis, tachycardia, piloerection, palpitations, nervousness, irritability, sensation of coldness, weakness, trembling, hunger
 - Neuroglycopenic symptoms
 - Headache, mental confusion, circumoral paresthesia, fatigue, incoherent speech, diplopia, emotional lability, convulsions
 - Adrenergic symptoms generally precede neuroglycopenic symptoms
Signs and Symptoms of Hypoglycemia
- Patients on beta adrenergic blockers are at special risk for hypoglycemia. These meds block early signs of hypoglycemia because they are blocking the adrenergic part of the sympathetic nervous system.
- May occur during sleep
 - Nightmares, sweating, restless sleep, morning headache, feeling exhausted when awakening

Hypoglycemia
- What are it’s causes?

Treatment of Hypoglycemia
- Eat or drink – 15gms simple CHO in any form
- IV – 25 mL D50W or Glucagon 1mg, sq or IM or if pt can’t eat or drink
- If unsure if hypo or hyper giving sugar will produce rapid recovery
- Notify MD
- After s/s passed give protein to keep BS elevated longer
- Educate patient to carry sugar supply e.g. candy, raisins, sugar cubes
- Repeat FSBS q15 mins until above 80 mg/dL

Early Morning Hyperglycemia
- Somogyi Effect
 - Undetected hypoglycemia followed by hyperglycemia (pt wakes with ↑ sugar)
 - Due to too much insulin
- Dawn phenomenon
 - High sugars on waking
 - No hypoglycemia
 - May result from secretion of counterregulatory hormones (growth hormone) which leads to insulin resistance
 - Too little insulin

Patient Education
- Diet
- Glucose monitoring
- Activity
- Medications
- PHM and foot care
- Care during infection
- Patient Eye Checks
- Patient Foot Checks
- Benefits of Self Care for Diabetes

Glucose blood levels improve
- Fewer hospitalizations
- Fewer complications
- Education vital

ADA – Check your risk for diabetes
- ADA Diabetes risk FBS
- Diabetes PHD health risk assessment http://www.diabetes.org

LCMH Analogs and Case Studies