Review Eye Anatomy

- Physiology of Vision
 - Light rays enter the eye and are bent (refracted) as they pass through eye structures to the retina.
 - Eye adjusts (accommodates) to seeing objects at various distances by flattening or thickening the lens.
 - Light rays are absorbed by photoreceptors, changed to electrical activity and transmitted via the optic nerve to the brain for processing.

- Aging Eyes
 - Decreased flexibility of the lens – decreases the ability of the eye to focus (accommodate) for near work. PRESBYOPIA
 - Decreased color perception
 - Smaller pupil size allows less light in causing impaired night vision.
 - A 60 year old needs about twice as much light to see as they did when they were 20 years old.
 - Glare
 - Decreased field of vision
 - Decrease in lens transparency – cataracts
 - Aqueous humor production decreases
 - Decreased tears
 - Duller appearance and may feel tight, scratchy or dry

Macular Degeneration

- Neovascular (wet or exudative)
 - Proliferation of new fragile blood vessels that leak in macular area and damage the macula. Scarring occurs and vision declines.

- Nonneovascular (nonexudative or dry)
 - Waste materials deposit and cause atrophy of retina

Symptoms include
 - Perceived dark spots, missing areas, distorted wavy lines
 - Visual blurring and distortion
 - Central vision loss
 - Decreased ability to distinguish colors
 - Loss of Central Vision

- Treatment
 - Nonneovascular – no treatment
 - Neovascular – laser therapy to stop leakage from vessels
 - Vision is not improved – additional loss of central vision is often spared

- Nursing Intervention
 - Promote regular eye examinations
 - Promote Rules for Eye Safety (Pg 1892 in Phipps)
 - Promote adequate nutrition for eye health. Vitamin A and B are especially needed to maintain eye health.
 - Referral to community agencies for those who have declining vision.
 - Magnifying glasses, high intensity reading lights

Glaucoma

- Caused by progressive optic nerve atrophy causing loss of vision.
- Obstruction in outflow channels for aqueous humor results in back up of fluid and a rise in IOP. (Normal is 10-21 mm Hg)
- Atrophy is caused by elevated intraocular pressure (IOP).
• Risk factors
 o Age
 o Race – African American
 o Myopia
 o Family history
 o Race – Asian race – angle closure glaucoma

• Types of Glaucoma
 o Open-angle glaucoma
 o Angle closure glaucoma
 o Primary when etiology is unknown
 o Secondary when it results from another eye disorder
 ▪ Refer to types on pg 1893 of Phipps

• Open Angle Glaucoma
 o IOP greater than 24 mm Hg
 o Slow loss of vision
 o Peripheral vision loss first, (tunnel vision) then central, then blindness
 ▪ Note Phipps pg 1894
 o Difficulty adjusting to darkness
 o Failure to detect color changes
 o Normal Vision
 o Peripheral Vision Loss

• Angle Closure Glaucoma
 o Acute severe ocular pain
 o Pupil enlarged and fixed
 o Colored halos around lights
 o May have N/V
 o Dramatically increased IOP; may exceed 50 mm Hg
 o Permanent blindness if marked increase in IOP for 24 – 48 hours.

• Common Medications
 o Decrease aqueous humor production
 ▪ Beta-Adrenergic Antagonists
 ▪ Carbonic Anhydrase Inhibitors
 ▪ Adrenergic Agents
 o Increases outflow of aqueous humor
 ▪ Miotics
 ▪ Cholinesterase Inhibitors
 ▪ Adrenergic Agents
 ▪ Prostaglandin Agonist

• Medications are administered topically or systemically
 o Davis Drug Guide – Appendix pg 1146-1157
 o Be able to look up a ophthalmic medication and determine how it helps decrease IOP.

• Surgical Management
 o Indicated if conservative management fails to control IOP.

• Glaucoma – Nursing Intervention
 o Promote regular screening of older population
 o Assess ability to purchase medications and refer prn
 o Assess ability to administer eye drops

Cataracts
 • Clouding or opacity of lens that leads to gradual painless blurring and eventual loss of vision.
 • Risk factors
- Ultraviolet radiation a suspected cause
- Higher incidence in warm sunny climates
- Vitamin deficiency of Vitamin A, C, E a suspected cause
- Eye injury
- Secondary to other systemic diseases
- Age and Sex (65yo and women)
- Signs and symptoms of cataracts
 - Painless blurring and loss of vision
 - Peripheral vision affected first
 - Glare
 - Halos
 - Loss of ability to “see” hues
 - Cloudy white opacity on pupil
- Surgical management is effective 90-95% of the time.
 - A same day surgery under local anesthesia
 - Lens is implanted during surgery

Ear Anatomy and Physiology
- Review
- Sound Transmission
 - Air conduction
 - Transmits sound from middle to inner ear
 - Bone conduction
 - Transmits sound from skull to inner ear
 - Sound energy is transformed to neural energy for transmission to the brain. Via the 8th cranial nerve.
 - Ear sends impulse to brain to assist in maintaining balance / equilibrium.

Hearing Loss
- Conductive hearing loss- a mechanical problem in outer or middle ear interfering with conduction of sound waves.
- Sensorineural hearing loss- a nerve problem interfering with conduction of sound waves.
- Conductive Hearing Loss
 - Caused by anything that blocks the external ear
 - Wax
 - Infection
 - Foreign body
 - Tumors
 - Scar tissue
- Sensorineural Hearing Loss
 - Disease or trauma to inner ear, nerves, nerve pathways
 - Diabetes, arteriosclerosis, infectious
- Noise induced hearing loss (greater than 90 decibels for prolonged time)
- Age related presbycusis
 - Tinnitus
- Ototoxic Drugs
 - Note Table 50-1 on pg 1913 of Phipps
 - Aminoglycosides
 - Vancomycin
 - Loop Diuretics – rapid parenteral administration
 - Erythromycin
 - Salicylates
• NSAIDS
 • ***Tinnitus is a common preliminary symptom***

• Hearing Aids
 • Know how to care for a hearing aid
 • Pg 1923 in Phipps

• Know how to communicate with the hearing impaired
 • Pg 1923 in Phipps

Endocrine System
 • The endocrine system is a cellular communicating system involving hormones.
 • A hormone is a molecule secreted from one organ that travels in the blood and has an effect on a distant organ.

• Thyroid Gland
 • Two lobes
 • Two cell types
 ▪ Follicular – produce T3 and T4
 ▪ Parafollicular - synthesize and secrete calcitonin

• Endocrine Feedback Loop
 • Hypothalamus produces thyroid releasing hormone
 • \(\rightarrow \) Pituitary to produce thyroid stimulating hormone (TSH)
 • \(\rightarrow \) The Thyroid gland to produce
 ▪ Thyroxine (T4)
 ▪ Triiodothyromine (T3)
 • Iodine is necessary for the synthesis of these hormones

• Clinical Manifestations of Hypothyroidism
 • Decreased metabolic rate, heat production and oxygen consumption.
 • Cold intolerance, decreased body temperature
 • Cool dry skin
 • Decreased appetite, weight gain
 • Myxedema facies (Phipps pg 900)
 • Fatigue
 • Anemia

• Thyroid Function Testing
 • TSH assay –
 ▪ increased levels indicate hypothyroidism
 ▪ decreased levels indicate hyperthyroidism
 ▪ used to monitor thyroid hormone replacement therapy
 • Free T4 – (free means not bound to protein)
 • Free T3
 • Thyroid Stimulating Hormone
 ▪ The earliest marker of hypothyroidism is an elevated TSH
 ▪ Normal Adult 0.4-4.2 micro Units / ml
 ▪ Probable hypothyroidism – greater than 7.0 micro units/ml
 ▪ Desired level when receiving thyroxine therapy – 0.5-3.5 micro units/ml
 • Thyroxine - T4
 ▪ Hormone produced in thyroid gland from iodine and thyroglobulin.
 ▪ Production occurs in response to the effects of TSH on the thyroid gland.
 ▪ When released, 99.6% of T4 is bound to protein. Bound hormone acts as reservoir.
 ▪ The remaining 0.4% is “free” throxine and is biologically active.
• Medication
 o Daily oral dose of Sodium Levothyroxine (L-thyroxine)
 o 1.6-1.8(micrograms/kg) of body weight
 o A pt weighing 70Kg would be prescribed 112 –126 mcg per day
 o Commonly a pt is started on 50mcg/day and increased q 2-3 weeks. Maintenance dose is 75-125 mcg/day

Degenerative Joint Disease – (DJD)
• Osteoarthritis (OA) – cellular, biochemical and biomechanical factors affecting diarthroidal joints
 o 80% of gerons have radiographic evidence, 5 – 10% have clinical symptoms.
 o Women – hands
 o Men – hips knees and spine
• Risk Factors
 o Weight – obesity (Body Mass Index greater than 25) causes 21% increase in knee OA
 o Family history
 o Race
 o Injury to a joint
 o OA
• Primary – no know underlying causes
• Secondary – any condition that causes damage to cartilage, chronic stress to joints or causes joint instability
 o OA
 o Despite “itis” there is a small amount of low grade inflammation
 o Mechanical abnormalities in joint can cause inflammation
 o Generally considered non inflammatory to distinguish it from Rheumatoid Arthritis
• OA - Pathology
 o Erosion of articular cartilage
 o Normally smooth, white, translucent – now becomes yellow and opaque Cartilage becomes soft and gets rough, frayed and cracked. Cartilage destroyed.
 o Thickening of subchondral bone
 o Bone goes trough a remodeling process
 o Formation of osteophytes (bone spurs)
 o Bone spurs may break off and be loose
• Clinical Manifestations
 o Pain – “deep aching” in joint
 o Weather changes, increased activity
 o Swelling, joint enlargement
 o Decreased ROM
 o Muscle atrophy
 o Crepitus
 o Joint stiffness
 o Stiffness last less than 1 hour
• Diagnosis
 o Patient history
 o Physical Assessment
 o Radiographic studies
 o Narrowing of joint space
 o Osteophyte formation
 o Eburnation (sclerosis) of subchondral bone
• Focus of Therapy
 o Joint protection
 o Weight reduction
 o Use of cane or splints
 o Physical Therapy
- Exercise is indicated
- ROM daily
- Isometric and isotonic (that do not stress the joint - exercises daily)
- Swimming and water exercises
 - Heat and cold therapy
 - Exercise reduces fatigue, though with advanced disease exercise may exacerbate symptoms. Rest relieves most joint pain but should be avoided for prolonged periods, because immobility promotes joint stiffness.
 - Pain Relief
 - Medications
 - Analgesics (mild to moderate pain)
 - Acetaminophen – doses up to 4G/day
 - Dosing at intervals or prn
 - Watch liver and renal function
 - NSAIDS (mild to moderate pain)
 - Cox-1 and Cox-2
 - Prevent prostaglandins (pain and inflammation)
 - Intra-articular corticosteroids injection
 - No more than 3 – 4 injections per year
 - Risk of infection and cutaneous atrophy
 - Corticosteroids have many side effects
 - Opioids
 - Refer to Table 48-7 in Phipps pg 1525)
 - Surgical Management
 - Arthroplasty
 - Osteotomy
 - Athrodesis – joint fusion

Osteoporosis
- Bone Density
 - Osteoblastic forces (bone remodeling or building) predominate through young adulthood until peak bone mass is achieved at age 35.
 - Osteoclastic forces predominate after menopause
- Osteoporosis
 - Called the “silent thief” or “silent disease”.
 - Earliest sign may be acute inset of back pain from vertebral fracture that occurred at rest or with minimal activity.
 - Loss of height. Lower rib cage may rest on iliac crests!
 - No outward manifestations may be apparent until a fracture occurs.
- Osteoporosis- Risk Factors
 - Unchangeable
 - Aging – postmenopausal
 - Caucasian or Asian female
 - Nullparity
 - Family history
 - Small frame – low body weight
 - There has been a gene identified which controls bone density
 - Changeable
 - Diet
 - Chronic calcium deficiency
 - Vitamin D deficiency
 - Chronic alcohol abuse
 - Excessive caffeine intake
- Diet high in protein and fat
- Low peak bone mass at skeletal maturity
- Smoking
- Sedentary lifestyle - Accelerated postmenopausal bone loss

- Types of Osteoporosis
 - Primary – no cause, no underlying pathologic condition
 - Secondary – results from another cause or medical condition
 - See Box 47-9 in Phipps pg 1556

- Measuring Bone Mass
 - Dual-Energy X-ray Absorptiometry (DEXA)
 - Scans heel, finger, lumbar spine, non dominant proximal femur or forearm to determine bone mineral density (BMD)
 - Used to predict fracture risk
 - Z score – peak bone mass
 - T score – comparison of BMD with others the same age
 - Evaluating T Scores
 - Normal skeletal status
 - T score above –1
 - Osteopenia
 - T score between –1 to –2.5
 - Osteoporosis
 - T score at or below –2.5
 - Severe Osteoporosis
 - Below –2.5 and presence of one or more pathologic fractures

- Medications
 - Decrease bone resorption and/or increase bone formation
 - Calcium
 - Vitamin D Compounds
 - Estrogen Replacement
 - Calcitonin (IM, SC, Intranasal)
 - Biphosphonates (end in “ate”)
 - Selective Estrogen Receptor Modulators (SERM’s)

- Nursing Intervention
 - You are asked to speak to a group of perimenopausal women at a local community center. The topic in “healthy bones”. Describe essential components of your presentation.

- Your patient is considering pharmacological treatment options for severe osteoporosis. Explain the various categories of medications used.

Parkinson’s Disease

- Most cases are primary or idiopathic
- Secondary cases may develop from some medications, infections, brain trauma or tumors or ingestion of neurotoxins.

- Pathophysiology
 - Dopaminergic neurons in basal ganglia are destroyed. (No symptoms till 70% destroyed.)
 - Neurotransmitters in basal ganglia
 - Dopamine – produces inhibitory effects
 - Acetylcholine - produces excitatory effects
 - When the excitatory effect of acetylcholine is inadequately balanced, an individual has difficulty controlling or inhibiting voluntary movements.

- Clinical Manifestations
 - Tremor
- Rigidity
- Akinesia/Bradykinesia
- Postural instability
 - (See Clinical Manifestations Box in Phipps pg 1390)
 - (Note Secondary Manifestations in Box 43-9 in Phipps pg 1391)
- Cannot be stopped or cured – but drug therapy can control symptoms.

- Diagnosis
 - Made from patient history and symptoms
 - No definitive diagnostic test
 - Confirmed primarily from response to medication

- Medications
 - 1. Levodopa - crosses blood brain barrier and converts to dopamine.
 - Sinamet contains Levodopa and carbidopa. Carbidopa blocks conversion of levodopa in the peripheral tissues. See pt teaching guidelines in Phipps pg 1392. Most common medication given for Parkinson’s disease
 - 2. Anticholinergics – they stop the excitatory effects of the cholinergic neurions.
 - Stop tremors and decrease muscle rigidity
 - Antiviral agents
 - Potentiates the action of dopamine in the CNS
 - Dopamine agonists – stimulates dopamine receptors and increases the effect of levodopa
 - Monoamine Oxidase B Inhibitor (MAO inhibitors) – blocks metabolism of dopamine
 - COMT Inhibitors - prevents breakdown of levodopa

- Nursing Intervention
 - Describe the main components of the Nursing Care Plan for a Patient with Parkinson’s Disease in Phipps pgs 1393-1396.

Shingles – Herpes Zoster
- Persons who have had chicken pox may develop herpes zoster after being exposed to a person with a vesicular lesion of varicella zoster.
 - It is thought that a person who develops herpes zoster has only partial immunity to varicella zoster and therefore susceptible.

- Symptoms
 - Macules-vesicles are arranged in linear fashion – never crossing the midline of the body.
 - Malaise, fever, itching, pain over involved are precede the rash.
 - Rash appears on thoracic area, face, eye and scalp.
 - Vesicles develop in 1 – 2 days. Lesions clear in 2-3 weeks.
 - Pain and itching is a major problem.
 - Pain may be light burning to deep visceral type pain. It may be intermittent or constant. Can persist for 4 weeks.
 - 10% of patients get postherpetic neuralgia

- Medications
 - Anti viral therapy
 - Zovirax 800 mg five times a day X 7 days
 - Can be give IV
 - Analgesics
 - ASA with or without codeine
 - Topical agents for itching
 - Postherpetic Neuralgia
 - Pain results form nervous system damage and may last for years
 - Multidisciplinary approaches to pain management are usually needed.