Solution to Test #2

Problem 1. (15 points) Complete the table by filling the inverse functions.

<table>
<thead>
<tr>
<th>Function</th>
<th>Inverse function</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h(x) = -2x + 3)</td>
<td>(h^{-1}(x) = \frac{1}{2}(-x + 3)) OR (h^{-1}(x) = \frac{1}{2}(3 - x))</td>
</tr>
<tr>
<td>(f(x) = 2^x)</td>
<td>(f^{-1}(x) = \log_2 x)</td>
</tr>
<tr>
<td>(g(x) = \log_3 x)</td>
<td>(g^{-1}(x) = 3^x)</td>
</tr>
</tbody>
</table>

\[x = -2y + 3 \quad \text{(switch then solve for } y) \Rightarrow 2y = -x + 3 \]
\[\Rightarrow y = \frac{1}{2}(-x + 3) \quad \text{OR} \quad y = \frac{1}{2}(3 - x) \]

\[x = 2^y \Rightarrow \quad \text{(switch then solve for } y) \Rightarrow y = \log_2 x \]

\[x = \log_3 y \Rightarrow \quad \text{(switch then solve for } y) \Rightarrow y = 3^x \]

Problem 2. (18 points) Complete the table about the domain and range of the given functions.

<table>
<thead>
<tr>
<th>Function</th>
<th>Domain</th>
<th>Range</th>
<th>Asymptote</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x) = 3^{x-1})</td>
<td>((-\infty, +\infty))</td>
<td>((0, +\infty))</td>
<td>(y = 0)</td>
</tr>
<tr>
<td>(h(x) = \ln x)</td>
<td>((0, +\infty))</td>
<td>((-\infty, +\infty))</td>
<td>(x = 0)</td>
</tr>
<tr>
<td>(g(x) = \log_3(x - 1))</td>
<td>((1, +\infty))</td>
<td>((-\infty, +\infty))</td>
<td>(x = 1)</td>
</tr>
</tbody>
</table>

For the domain of function: \(g(x) = \log_3(x - 1) \)
\[x - 1 > 0 \Rightarrow x > 1 \]

Problem 3. (12 points) Evaluate the following expressions:

(a) \[\log_2 \sqrt{32} = \log_2 2^{\frac{5}{2}} = \frac{5}{2} \]

(b) \[\log_8 4 = \log_8 8^{\frac{2}{3}} = \frac{2}{3} \]

Note: \[4 = \frac{8}{2} = 8 \cdot 2^{-1} = 8^{\frac{1}{3}} \cdot 8^{-\frac{1}{3}} = \left(8\right)^{\frac{2}{3}} \]

(c) \[\log_2 56 - \log_2 7 = \log_2 \frac{56}{7} = \log_2 8 = \log_2 2^3 = 3 \]

Problem 4. (10 points) Write as a single logarithm:

\[\log x - 2 \log(x^2 + 1) + \frac{1}{2} \log(3 - x^2) \]
\[= \log \frac{x}{(x^2 + 1)^2} + \log \sqrt{3 - x^2} \]
\[= \log \left(\frac{x}{(x^2 + 1)^2} \cdot \sqrt{3 - x^2} \right) = \log \frac{x\sqrt{3-x^2}}{(x^2+1)^2} \]

Problem 5 (20 points) Find the solutions to the equations:

(a) \[2^{x-1} = 10 \Rightarrow x - 1 = \log_2 10 \Rightarrow x = \log_2 10 + 1 \]
(b) \[5 \ln(x + 1) = 0 \implies \ln(x + 1) = 0 \implies x + 1 = e^0 = 1 \implies x = 0 \]
OR: \[5 \ln(x + 1) = 0 \implies \ln(x + 1)^5 = 0 \]
\[(x + 1)^5 = e^0 = 1 \implies (x + 1)^5 = 1 \implies x + 1 = 1 \implies x = 0 \]
Mistakes: \[5 \ln(x + 1) = 0 \implies 5(x + 1) = 0 \]

(c) \[2^{x^3} = e^{2x} \implies \ln 2^{x^3} = \ln e^{2x} \implies (x + 3) \ln 2 = 2x \ln e = 2x \]
\[(x + 3) \ln 2 = 2x \implies x \ln 2 + 3 \ln 2 = 2x \implies 2x - x \ln 2 = 3 \ln 2 \]
\[\implies (2 - \ln 2)x = 3 \ln 2 \implies x = \frac{3 \ln 2}{2 - \ln 2} \]

(d) \[\log_2(x + 2) + \log_2(x - 1) = 2 \implies \log_2[(x + 2)(x - 1)] = 2 \]
\[(x + 2)(x - 1) = 2^2 = 4 \text{ (definition logarithm)} \implies x^2 + x - 2 - 4 = 0 \]
\[x^2 + x - 6 = 0 \implies (x + 3)(x - 2) = 0 \]
\[\implies x + 3 = 0 \quad \text{OR} \quad x - 2 = 0 \quad \text{(zero product property.)} \]
\[\implies x = -3 \quad \text{OR} \quad x = 2 \]
Check:
For \(x = -3 \), \(\log_2(-3 + 2) + \log_2(-3 - 1) = \log_2(-1) + \log_2(-4) \) undefined. So, \(x = -3 \) is not a solution to \(\log_2(x + 2) + \log_2(x - 1) = 2 \)
For \(x = 2 \), \(\log_2(2 + 2) + \log_2(2 - 1) = \log_2 4 + \log_2 1 = \log_2 2^2 + 0 = 2 \). \(x = 2 \) is a solution to \(\log_2(x + 2) + \log_2(x - 1) = 2 \)
Solution to the equation \(\log_2(x + 2) + \log_2(x - 1) = 2 \) is: \(x = 2 \)

Problem 6. (10 points) The population of the world in 2000 was 6.1 billions, and the estimated relative growth was 1.4% per year. If the population continues to grow at this rate, when will it reach 122 billions?
(Use \(n(t) = n_0 e^{rt} \), \(\ln 2 = 0.693 15, \ln 5 = 1. 609 4 \))
\[122 = 6.1 e^{1.4\% t} \]
\[e^{1.4\% t} = \frac{122}{6.1} = 20 \]
\[e^{1.4\% t} =\frac{122}{6.1} = 20 \]
\[1.4\% \cdot t = \ln 20 \]
\[0.014 \cdot t = \ln 20 \]
\[t = \frac{\ln 20}{0.014} = \frac{\ln 4 + \ln 5}{0.014} = \frac{2 \ln 2 + \ln 5}{0.014} = \frac{2 \cdot 0.693 15 + 1. 609 4}{0.014} = 213. 98 \]
214 years after 2000, there are 122 billions of people.
Problem 7. (6 points) The point \(P \) is on the unit circle. Find \(P(x,y) \) if the \(y \) coordinate is \(-\frac{\sqrt{3}}{2} \) and the \(x \) coordinate is positive.
Problem 8. (9 points) Suppose that the terminal point determined by \(t \) is the point \((-\frac{3}{5}, \frac{4}{5})\) on the unit circle. Please mark the terminal point determined by the following

(A) \(\pi - t \) (B) \(\pi + t \) (C) \(-t\)
\((-\frac{\sqrt{3}}{2})\)^2 + x^2 = 1, x > 0 \Rightarrow \frac{3}{4} + x^2 = 1 \Rightarrow x^2 = 1 - \frac{3}{4} = \frac{1}{4} \Rightarrow x = \frac{1}{2} \text{ since } x > 0

P(x,y) = \left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)

Problem 9 (4 points) Fill out the domain and range of the functions:
\(f(x) = \log_2(x^2 + 1)\)
Math 180

Domain Range Asymptote

\[f(x) = \log_2(x^2 + 1) \quad (-\infty, +\infty) \quad (-\infty, +\infty) \quad \text{None} \]

\[g(x) = \log_2(x^2 - 1) \quad (-\infty, -1) \cup (1, \infty) \quad (-\infty, +\infty) \quad x = -1 \text{ and } x = 1 \]

Note: \(x^2 + 1 > 0 \) is true for any real number \(x \).

As for \(g(x) = \log_2(x^2 - 1) \), we must satisfy:

\[x^2 - 1 > 0 \Rightarrow (x - 1)(x + 1) > 0 \Rightarrow x < -1 \text{ OR } x > 1 \]

Problem 10 (16 points) Use the given unit circle to complete the table for the values of the given functions.

<table>
<thead>
<tr>
<th>(t)</th>
<th>(\sin t)</th>
<th>(\cos t)</th>
<th>(\tan t)</th>
<th>(\cot t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>(\infty)</td>
</tr>
<tr>
<td>(\frac{\pi}{2})</td>
<td>1</td>
<td>0</td>
<td>(\infty)</td>
<td>0</td>
</tr>
<tr>
<td>(\pi)</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>(\infty)</td>
</tr>
<tr>
<td>(\frac{3\pi}{2})</td>
<td>-1</td>
<td>0</td>
<td>(\infty)</td>
<td>0</td>
</tr>
</tbody>
</table>

Problem 11. (10 points) The 1995 earthquake in Kobe, Japan is 7.2 – magnitude on the Richter scale. The recent earthquake in Asia is 7.6 – magnitude on the Richter scale. How many times more intense was the recent earthquake than the Kobe earthquake?

Solution:

7.2 – magnitude on the Richter scale \(\Rightarrow 7.2 = \log \frac{I_{\text{Japan}}}{S} \Rightarrow \frac{I_{\text{Japan}}}{S} = 10^{7.2} \Rightarrow I_{\text{Japan}} = 10^{7.2} \cdot S \)

7.6 – magnitude on the Richter scale \(\Rightarrow 7.6 = \log \frac{I_{\text{Asia}}}{S} \Rightarrow \frac{I_{\text{Asia}}}{S} = 10^{7.6} \Rightarrow I_{\text{Asia}} = 10^{7.6} \cdot S \)

\[\frac{I_{\text{Asia}}}{I_{\text{Japan}}} = \frac{10^{7.6} \cdot S}{10^{7.2} \cdot S} = 10^{0.4} = 10^{\frac{2}{5}} = 2.5119 \]

The recent earthquake is about 2.5 more intense than the Kobe earthquake in 1995.