Chapter 6 Communication, Integration, and Homeostasis

About This Chapter
• Cell-to-cell communication
• Signal pathways
• Novel signal molecules
• Modulation of signal pathways
• Homeostatic reflex pathways

Cell-to-Cell Communication: Overview
• Physiological signals
 – Electrical signals
 – Changes in the membrane potential of a cell
 – Chemical signals
 – Secreted by cells into ECF
 – Responsible for most communication within the body
• Target cells, or targets, respond to signals

Long-Distance Communication
• The nervous system uses a combination of chemical and electrical signals for long distance
cell-to-cell communication
• Neurocrines are chemical signals secreted by neurons
 – Neurotransmitters
 – Neuromodulators
 – Neurohormones

Cytokines
• Cytokines may act as both local and long-distance signals
• All nucleated cells synthesize and secrete cytokines in response to stimuli
• In development and differentiation, cytokines usually function as autocrine or paracrine
 signals
• In stress and inflammation, some cytokines may act on relatively distant targets

G Protein–Coupled Receptors (GPCR)
• Membrane-spanning proteins
• Cytoplasmic tail linked to G protein, a three-part transducer molecule
• When G proteins are activated, they
 – open ion channels in the membrane
 – alter enzyme activity on the cytoplasmic side of the membrane

Integrins
• Membrane-spanning proteins
• Outside the cell, integrins bind to extracellular matrix proteins or to ligands
• Inside the cell, integrins attach to the cytoskeleton via anchor proteins

Gases Are Ephemeral Signal Molecules
• Nitric oxide (NO)
 – Produced by endothelial cells
 – Diffuses into smooth muscle and causes vasodilation
 – Synthesized by the action of nitric oxide synthase (NOS)
 – Activates guanylyl cyclase
Formation of cGMP
- Acts as neurotransmitter and neuromodulator in brain

Gases Are Ephemeral Signal Molecules
- Carbon monoxide (CO)
 - Also activates guanylyl cyclase and cGMP
 - Targets smooth muscle and neural tissue
- Hydrogen sulfide (H₂S)
 - Targets cardiovascular system to relax blood vessels
 - Garlic is major dietary source of precursors

Some Lipids Are Important Paracrine Signals
- Leukotrienes
 - Role in asthma and anaphylaxis
- Prostanoids
 - Prostaglandins
 - Sleep, inflammation, pain, fever
 - Nonsteroidal anti-inflammatory drugs (NSAIDs) help prevent inflammation by inhibiting cyclooxygenase (COX)
 - Thromboxanes
 - Sphingolipids
 - Help regulate inflammation, cell adhesion and migration, and cell growth and death

Modulation of Signal Pathways
- Specificity and competition
- Agonist versus antagonist

Modulation of Signal Pathway Responses
- Down-regulation
 - Decrease in receptor number
- Desensitization
 - By binding a chemical modulator to receptor
- Up-regulation
 - Inserts more receptors in cell membrane
- Termination mechanism
- Disease and drugs

Table 6.1 Some Diseases or Conditions Linked to Abnormal Signaling Mechanisms
- Disease and drugs target signal transduction proteins

Control Systems: Cannon’s Postulates
1. Nervous regulation of internal environment
 - Regulates parameters
2. Tonic control
3. Antagonistic control
4. One chemical signal can have different effects in different tissues

Reflex Pathway Response Loops
- Stimulus
• Sensor or receptor
 — Threshold
• Input signal or afferent pathway
• Integrating center
 — In endocrine pathways, also the sensor
• Output signal or efferent pathway
• Target or effector
• Response
Summary
• Cell-to-cell communication
• Signal pathways
• Novel signal molecules
• Modulation of signal pathways
• Homeostatic reflex pathways

Chapter 7 Introduction to the Endocrine System

About This Chapter
• Hormones
• The classification of hormones
• Control of hormone release
• Hormone interactions
• Endocrine pathologies
• Hormone evolution
Hormones: Function
• Control
 — Rates of enzymatic reactions
 — Transport of ions or molecules across cell membranes
 — Gene expression and protein synthesis
Hormones
• Cell-to-cell communication molecules
 — Chemical signals
 — Secreted by a cell or group of cells
 — Transported by blood
 — Distant target tissue receptors
 — Activates physiological response at low concentrations
• Pheromones: elicit physiological or behavioral response on other organisms of the same species
Hormones
• Cellular mechanism of action
 — Depends on binding to target cell receptors
• Initiates biochemical responses
• Half-life indicates length of activity

Hormones: Classification by Chemical Class
• Peptide or protein hormones
• Steroid hormones
• Amino acid–derived or amine hormones

Hormones: Peptides or Proteins
• Preprohormone
 — Large, inactive precursor
• Prohormone
 — Smaller, inactive
 — Proteolytic, post-translational modification
• Peptide/protein hormones
 — Bind surface membrane receptors
 — Cellular response through signal transduction system

Hormones: Steroid
• Cholesterol-derived
 — Lipophilic and easily cross membranes
• Bind carrier proteins in blood
 — Longer half-life
• Cytoplasmic or nuclear receptors
 — Genomic effect to activate or repress genes for protein synthesis
 — Slower acting
• Cell membrane receptors
 — Nongenomic responses

Hormones: Amino Acid–Derived, or Amine
• Derived from one of two amino acids
 — Tryptophan
 — Tyrosine
• Ring structure

Amine Hormones: Examples
• Melatonin
• Catecholamines
 — Epinephrine
 — Norepinephrine
 — Dopamine
• Thyroid hormones

Endocrine Reflex Pathways
• Stimulus
• Sensor
• Input signal
• Integration
• Output (efferent) signal (hormone in blood)
• Targets
• Response physiological action
• Negative feedback

Neurohormones: Major Groups
• Adrenal medulla
 – Catecholamines
• Hypothalamus
 – Posterior pituitary is neural tissue
 – Anterior pituitary is endocrine tissue

Endocrine Control
• A trophic hormone controls the secretion of another hormone
• Hypothalamic-hypophyseal portal system
• Three integrating centers
 – Hypothalamic stimulation—from CNS
 – Anterior pituitary stimulation—from hypothalamic trophic hormones
 – Endocrine gland stimulation—from anterior pituitary trophic hormones (except prolactin)

Hormone Interactions
• Synergism
 – Combined effect is greater than the sum of individual effects
• Permissiveness
 – Need second hormone to get full effect
• Antagonism
 – One substance opposes the action of another
 – Competitive inhibitors vs. functional antagonism
 – Glucagons oppose insulin

Endocrine Pathologies
• Hypersecretion: excess hormone
 – Caused by tumors or exogenous iatrogenic treatment
 – Negative feedback
• Hypossecretion: deficient hormone
 – Caused by decreased synthesis materials or atrophy
 – Absence of negative feedback

Pathologies: Abnormal Receptors
• Down-regulation
 – Decreased number of receptors
 – Hyperinsulinemia
• Receptor and signal transduction abnormalities
 – Testicular feminization syndrome
 – Pseudohypothyroidism

Hormone Evolution
• Evolutionary conservation of hormone function
• Proteomics
 – Calcitonin gene-related peptide example
• Vestigial
 – Melanocyte-stimulating hormone example
• Comparative endocrinology
 – Pineal gland and melatonin example

Summary
• Hormones
• The classification of hormones
• Control of hormone release
• Hormone interactions
• Endocrine pathologies
• Hormone evolution