Goals: To explore linear inequalities with functions.

Task 1: (group work warm-up exercises – use your calculators if you want) Renting a Pick-up Truck: Jeff needs to move some lumber from his mountain villa to his city residence. The one-day cost functions for renting a pick-up truck from Budget or U-Haul are

\[B(x) = 39.95 + 0.19x \]

\[U(x) = 19.95 + 0.48x, \]

where \(x \) represents the number of miles driven. Before looking at a graph of these two linear functions, answer the following questions:

1. When \(x = 10 \) miles, which is more expensive, the pick-up truck from Budget or the pick-up truck from U-Haul? Answer this question by first evaluating both \(B(10) \) and \(U(10) \). Then explain your answer by completing the following sentence: "If Jeff needs to drive 10 miles, then...."

2. Answer Question 1 in the following form (by filling in the box with <, >, or =):

 When \(x = 10 \) miles, \(B(10) \underline{=} U(10) \).

3. When \(x = 100 \) miles, which is more expensive, the pick-up truck from Budget or the pick-up truck from U-Haul? Answer this question by first evaluating both \(B(100) \) and \(U(100) \). Then explain your answer by completing the following sentence: "If Jeff needs to drive 100 miles, then...."

4. Answer Question 3 in the following form (by filling in the box with <, >, or =):

 When \(x = 100 \) miles, \(B(100) \underline{=} U(100) \).

5. Your answers in Questions 2 and 4 should be opposites. That means that, up to some particular \(x \)-value (let’s call it \(x_0 \), which we read as "ex-sub-zero"), we have \(B(x) \underline{=} U(x) \) (fill in the box with < or >). And after \(x_0 \), the inequality switches, and \(B(x) \underline{=} U(x) \) (fill in the box with < or >). At \(x_0 \), the costs of renting a pick-up truck at Budget and at U-Haul are equal, that is to say, \(B(x_0) = U(x_0) \).
6. Find \(x_0 \). (You know how to do this. Set the expressions for \(B(x) \) and \(U(x) \) equal to each other and solve for \(x \). Use your calculator to get your final answer and round it to two decimal places.)

Task 2: (Mini-Lecture) Now let’s look at the graph of these two functions. Label each line correctly (\(C = B(x) \) or \(C = U(x) \)). It is clear that to the left of \(x_0 \), the \(B(x) \)-values are greater than the \(U(x) \)-values. To the right of \(x_0 \), the opposite holds.

An Abstract Example: Next, let’s look at a more abstract example. Here we have two linear functions \(f(x) = 6 - 3x \) and \(g(x) = 2x - 1 \). Below are the graphs of the two functions, on the same grid.

1. In the graph below, identify which line is \(y = f(x) \) and which line is \(y = g(x) \). Label them clearly.

2. Find the point of intersection. The ordered pair of this point can be described as \((x_0, f(x_0)) \) or \((x_0, g(x_0)) \). After all, it is the point of intersection. Label the value of \(x_0 \) on the graph.

3. Fill in the blanks in the picture below with the proper inequality sign (\(< \) or \(>\)).
Task 4: (Group Work) An Even Easier Real-Life Example: Let’s go back to Jeff’s pick-up truck rental. Suppose U-Haul offers a special rental deal where the flat rate to rent the pick-up for the day is $55.55 with no additional charge per mile. Budget keeps the same rental deal as before. In other words, now the two functions are

\[B(x) = 39.95 + 0.19x \]
\[U(x) = 55.55 \]

The graphs of these two functions is given in the figure below.

1. In the figure below, identify which line is \(C = B(x) \) and which line is \(C = U(x) \). Label them clearly.

2. Find the point of intersection. Label the value of \(x_0 \) on the graph.

3. Fill in the blanks in the picture below with the proper inequality sign (< or >).

\[C, \text{ cost in dollars} \]
\[B(x) _ _ 55.55 \]
\[x_0 \]
\[B(x) _ _ 55.55 \]

Task 5: (Mini-Lecture) An Easy Abstract Example: Let’s go back to the textbook for the last two examples. The problem asks you to find the solution set for the inequality

\[x - 3 < 8. \]

We know how to find the solution set for this inequality using algebra. Simply add 3 to both sides of the inequality. We get \(x < 11 \).

We’re going to look at this problem from a function point of view. We are going to let \(f(x) = x - 3 \) and \(g(x) = 8 \). We know the point of intersection of these two graphs is the point \((11,8)\).

In the graphs of these two functions, we know that the \(x \)-value for the point of intersection (which we’ve been calling \(x_0 \) in our previous examples) is equal to 11. So in the picture on the next page, we see that the piece of the graph of \(f(x) = x - 3 \) that lies to the left of the vertical line \(x_0 = 11 \) also lies below the horizontal line \(y = 8 \). In other words, if \(x < 11 \), then \(x - 3 < 8 \). The thick portion of the \(x \)-axis (with the arrow pointing to the left) is the solution set for our original inequality \(x - 3 < 8 \).
Task 6: (Group Work) Now, let’s look at another example. The inequality is \(-x + 2 \geq 5\). Solve this inequality algebraically:

Again, we want to interpret this inequality using functions \(f(x) = -x + 2\) and \(g(x) = 5\). Below are the graphs of these two functions.

1. On the graph above, draw the vertical line \(x = -3\).

2. Look at the graph of \(f(x)\). The graph of \(y = f(x)\) is greater than the graph of \(y = 5\) on one side of the vertical line \(x = -3\). Decide which side it is.

3. Highlight or thicken the portion of the \(x\)-axis that is on the same side of the vertical line \(x = -3\) that you chose question 2. Place a solid dot at \(x = -3\) on the \(x\)-axis. This is your number line solution set for the inequality \(-x + 2 \geq 5\).