2.5 The Product and Quotient Rules

So far we have two important rules, \((cf)' = cf'\) and \((f + g)' = f' + g'\). Put together we get the

linearity rule: \((af + bg)' = af' + bg'\)

There are four more very important rules we will need. Specifically, we want to know how to differentiate a product \(x \cdot \sin(x)\), a reciprocal \(1/\sin(x)\), a quotient \(x/\sin(x)\), and a power \(\sin^n(x)\).

Warm-Up Calculate the derivatives of \(f(x) = x^2\), \(g(x) = x^4\) and \(f(x)g(x) = x^6\).

Conclusion

\((f \cdot g)' \neq\)

The product rule Okay, so we know what it’s not. But is there a way to get the derivative of a product from the derivatives of the separate factors? Yes! Let’s say we want to get the derivative of \(u(x)v(x)\) or \(uv\) for short. Look at the average slope, \(\frac{\Delta uv}{\Delta x}\).

\[
\frac{\Delta uv}{\Delta x} = \frac{u(x + h)v(x + h) - u(x)v(x)}{h}
\]

We can illustrate the numerator with a diagram. You will have to fill in some of the picture in class.

\[
\begin{array}{c|c}
\hline
& \hline \\
\hline & & \hline \\
& & \hline \\
\hline
\end{array}
\]

This shows that

\[
\frac{u(x + \Delta x)v(x + \Delta x) - u(x)v(x)}{\Delta x} = \frac{u\Delta v + v\Delta u + \Delta u\Delta v}{\Delta x}
\]

\[
= u \frac{\Delta v}{\Delta x} + v \frac{\Delta u}{\Delta x} + \Delta u \frac{\Delta v}{\Delta x}
\]
And in the limit
\[
\lim_{\Delta x \to 0} \frac{duv}{dx} = \lim_{\Delta x \to 0} \left(u \frac{\Delta v}{\Delta x} + v \frac{\Delta u}{\Delta x} + \Delta u \frac{\Delta v}{\Delta x} \right) = u \frac{dv}{dx} + v \frac{du}{dx} + 0 \frac{dv}{dx}
\]
which gives us

product rule \((f \cdot g)' = f \cdot g' + g \cdot f' \)

Task 1. Use the product rule to calculate the derivative of \(x \sin(x) \)

Reciprocal rule We get the reciprocal rule from the product rule. Starting with the product of reciprocals,

\[
u \cdot \frac{1}{u} = 1
\]

Then take the derivative of each side.

\[
\left(u \cdot \frac{1}{u} \right)' = (1)'
\]

\[
u \cdot \left(\frac{1}{u} \right)' + \left(\frac{1}{u} \right) \cdot u' = 0
\]

And isolate the \((1/u)'

\[
\left(\frac{1}{u} \right)' = -\frac{1}{u^2} u'
\]

Task 2. Use the reciprocal rule to calculate the derivative of \(\frac{1}{\sin(x)} \). Notice this is the derivative of \(\csc(x) \).
Quotient rule From the product rule and the reciprocal rule comes the quotient rule.

\[\left(\frac{u}{v} \right)' = \left(u \cdot \frac{1}{v} \right)' \]

\[= u \cdot \left(\frac{1}{v} \right)' + \frac{1}{v} \cdot u' \]

\[= u \cdot -\frac{1}{v^2} v' + \frac{1}{v} \cdot u' \]

\[= \frac{-uv' + u'}{v^2} \]

\[= \frac{u'v - uv'}{v^2} \]

Task 3. Use the quotient rule to calculate the derivative of \(\frac{x}{\sin(x)} \)

Task 4. Use the quotient rule to calculate the derivative of \(\frac{\sin(x)}{\cos(x)} \). Notice that this is the derivative of \(\tan(x) \).
The power rule The power rule is established by mathematical induction. We wish to show that
\[(u^n(x))' = n \cdot u^{n-1}(x) \cdot u'(x),\] or \[(u^n)' = nu^{n-1}u',\] for short. We start with \(n = 1\).
\[(u)' = 1 \cdot u^0 \cdot u' = u'

This is trivial but necessary. Next we go from the \(n\)th power to the \((n+1)\)st power and apply the product rule
\[(u^{n+1})' = (u^n \cdot u)'
= u^n \cdot u' + u \cdot (u^n)'
= u^n \cdot u' + u \cdot n \cdot u^{n-1} \cdot u'
= u^n \cdot u' + n \cdot u^n \cdot u'
= (n + 1) \cdot u^n \cdot u'

This proves our power rule for positive integer powers.

Task 5. Use the power rule to calculate the derivative of \(\sin^2(x)\). Notice that this confirms our old square rule.

Extended power rule It can be shown that the power rule will extend to all rational powers. For example \(x^{3/2}' = \frac{3}{2}x^{1/2}\).
Task 6. Find the derivatives of the following functions.

a) \[\frac{1}{1 + x^2} + \frac{1}{1 - \sin(x)} \]

b) \[x^{3/2} \sin(x) + (\sin(x))^{3/2} \]

c) \[[u(x)]^3 [v(x)]^5 \]
Example 1. A box is growing. The length is t, the width is $\frac{1}{1+t}$ and the height is $\sin t$. What is the rate of change (the derivative) of the volume?

Task 7. A cylinder has radius $r = \frac{t^{3/2}}{1 + t^{3/2}}$ and height $h = \frac{t}{1 + t}$. Find the rate of change of the surface area. Hint: The lateral area is the area of the rectangle whose height is h and whose length is the circumference of the top/bottom circle, $2\pi r$. Then put this together with the areas of the top and bottom, $2 \cdot \pi r^2$.

The rules so far

<table>
<thead>
<tr>
<th>Rule</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearity</td>
<td>$(au + bv)' = au' + bv'$</td>
</tr>
<tr>
<td>Product</td>
<td>$(uv)' = u'v + uv'$</td>
</tr>
<tr>
<td>Reciprocal</td>
<td>$\left(\frac{1}{u}\right)' = -\frac{1}{u^2}u'$</td>
</tr>
<tr>
<td>Quotient</td>
<td>$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$</td>
</tr>
<tr>
<td>Power</td>
<td>$(u^n)' = nu^{n-1}u'$</td>
</tr>
</tbody>
</table>